# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ GCN training script. """ import time import argparse import numpy as np from mindspore import context from src.gcn import GCN, LossAccuracyWrapper, TrainNetWrapper from src.config import ConfigGCN from src.dataset import get_adj_features_labels, get_mask def train(): """Train model.""" parser = argparse.ArgumentParser(description='GCN') parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Dataset directory') parser.add_argument('--seed', type=int, default=123, help='Random seed') parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training') parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation') parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test') args_opt = parser.parse_args() np.random.seed(args_opt.seed) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) config = ConfigGCN() adj, feature, label = get_adj_features_labels(args_opt.data_dir) nodes_num = label.shape[0] train_mask = get_mask(nodes_num, 0, args_opt.train_nodes_num) eval_mask = get_mask(nodes_num, args_opt.train_nodes_num, args_opt.train_nodes_num + args_opt.eval_nodes_num) test_mask = get_mask(nodes_num, nodes_num - args_opt.test_nodes_num, nodes_num) class_num = label.shape[1] gcn_net = GCN(config, adj, feature, class_num) gcn_net.add_flags_recursive(fp16=True) eval_net = LossAccuracyWrapper(gcn_net, label, eval_mask, config.weight_decay) test_net = LossAccuracyWrapper(gcn_net, label, test_mask, config.weight_decay) train_net = TrainNetWrapper(gcn_net, label, train_mask, config) loss_list = [] for epoch in range(config.epochs): t = time.time() train_net.set_train() train_result = train_net() train_loss = train_result[0].asnumpy() train_accuracy = train_result[1].asnumpy() eval_net.set_train(False) eval_result = eval_net() eval_loss = eval_result[0].asnumpy() eval_accuracy = eval_result[1].asnumpy() loss_list.append(eval_loss) print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss), "train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss), "val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t)) if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]): print("Early stopping...") break t_test = time.time() test_net.set_train(False) test_result = test_net() test_loss = test_result[0].asnumpy() test_accuracy = test_result[1].asnumpy() print("Test set results:", "loss=", "{:.5f}".format(test_loss), "accuracy=", "{:.5f}".format(test_accuracy), "time=", "{:.5f}".format(time.time() - t_test)) if __name__ == '__main__': train()