# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore import Tensor from mindspore.ops import operations as P import mindspore.nn as nn from mindspore.common.api import ms_function import numpy as np import mindspore.context as context from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter context.set_context(device_target='GPU') class TensroAdd(nn.Cell): def __init__(self): super(TensroAdd, self).__init__() self.add = P.TensorAdd() self.x = Parameter(initializer( Tensor(np.random.randn(2, 0).astype(np.float32)), [2, 0]), name='x') self.y = Parameter(initializer( Tensor(np.random.randn(2, 1).astype(np.float32)), [2, 1]), name='y') self.x1 = Parameter(initializer( Tensor(np.arange(3).reshape(3).astype(np.float32)), [3]), name='x1') self.y1 = Parameter(initializer( Tensor(np.array([2]).astype(np.float32)), [1]), name='y1') self.x2 = Parameter(initializer( Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='x2') self.y2 = Parameter(initializer( Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y2') self.x3 = Parameter(initializer( Tensor(np.arange(1 * 1 * 3 * 3).reshape(1, 1, 3, 3).astype(np.float32)), [1, 1, 3, 3]), name='x3') self.y3 = Parameter(initializer( Tensor(np.arange(3 * 3 * 3 * 3).reshape(3, 3, 3, 3).astype(np.float32)), [3, 3, 3, 3]), name='y3') @ms_function def construct(self): return ( self.add(self.x, self.y), self.add(self.x1, self.y1), self.add(self.x2, self.y2), self.add(self.x3, self.y3)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_TensroAdd(): add = TensroAdd() output = add() expect0 = np.array([]) expect1 = np.array([2, 3, 4]) expect2 = np.array( [[[[0., 2., 4.], [6., 8., 10.], [12., 14., 16.]], [[18., 20., 22.], [24., 26., 28.], [30., 32., 34.]], [[36., 38., 40.], [42., 44., 46.], [48., 50., 52.]]], [[[54., 56., 58.], [60., 62., 64.], [66., 68., 70.]], [[72., 74., 76.], [78., 80., 82.], [84., 86., 88.]], [[90., 92., 94.], [96., 98., 100.], [102., 104., 106.]]], [[[108., 110., 112.], [114., 116., 118.], [120., 122., 124.]], [[126., 128., 130.], [132., 134., 136.], [138., 140., 142.]], [[144., 146., 148.], [150., 152., 154.], [156., 158., 160.]]]]) expect3 = np.array( [[[[0., 2., 4.], [6., 8., 10.], [12., 14., 16.]], [[9., 11., 13.], [15., 17., 19.], [21., 23., 25.]], [[18., 20., 22.], [24., 26., 28.], [30., 32., 34.]]], [[[27., 29., 31.], [33., 35., 37.], [39., 41., 43.]], [[36., 38., 40.], [42., 44., 46.], [48., 50., 52.]], [[45., 47., 49.], [51., 53., 55.], [57., 59., 61.]]], [[[54., 56., 58.], [60., 62., 64.], [66., 68., 70.]], [[63., 65., 67.], [69., 71., 73.], [75., 77., 79.]], [[72., 74., 76.], [78., 80., 82.], [84., 86., 88.]]]] ) assert (output[0].asnumpy() == expect0).all() assert (output[1].asnumpy() == expect1).all() assert (output[2].asnumpy() == expect2).all() assert (output[3].asnumpy() == expect3).all()