# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor from tests.ut.python.ops.test_math_ops import VirtualLoss import mindspore as ms from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.parallel._utils import _reset_op_id as reset_op_id from mindspore import context context.set_context(mode=context.GRAPH_MODE) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return C.grad_all(self.network)(x, y, b) def compile(net, x, y, b, phase): net.set_auto_parallel() _executor.compile(net, x, y, b, phase=phase) def test_auto_parallel_arithmetic(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.floordiv = P.FloorDiv() def construct(self, x, y, b): out = self.matmul(x, y) out = self.floordiv(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) net = NetWithLoss(Net()) context.set_auto_parallel_context(parallel_mode="auto_parallel") reset_op_id() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 128]), dtype=ms.float32) b = Tensor(np.ones([64, 128]), dtype=ms.float32) compile(net, x, y, b, phase='train') strategies = _executor._get_strategy(net) expected_strategies = {'Default/network-Net/FloorDiv-op0': [[2, 4], [2, 4]], 'Default/network-Net/MatMul-op1': [[2, 1], [1, 4]]} assert strategies == expected_strategies def test_auto_parallel_arithmetic_broadcast_both(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.floordiv = P.FloorDiv() def construct(self, x, y, b): out = self.matmul(x, y) out = self.floordiv(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) net = NetWithLoss(Net()) context.set_auto_parallel_context(parallel_mode="auto_parallel") reset_op_id() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 1]), dtype=ms.float32) b = Tensor(np.ones([1, 64]), dtype=ms.float32) compile(net, x, y, b, phase='train') strategies = _executor._get_strategy(net) expected_strategies = {'Default/network-Net/FloorDiv-op0': [[8, 1], [1, 1]], 'Default/network-Net/MatMul-op1': [[8, 1], [1, 1]]} assert strategies == expected_strategies def test_auto_parallel_arithmetic_broadcast_right(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.floordiv = P.FloorDiv() def construct(self, x, y, b): out = self.matmul(x, y) out = self.floordiv(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) net = NetWithLoss(Net()) context.set_auto_parallel_context(parallel_mode="auto_parallel") reset_op_id() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 32]), dtype=ms.float32) b = Tensor(np.ones([32]), dtype=ms.float32) compile(net, x, y, b, phase='train') strategies = _executor._get_strategy(net) expected_strategies = {'Default/network-Net/FloorDiv-op0': [[4, 2], [2]], 'Default/network-Net/MatMul-op1': [[4, 1], [1, 2]]} assert strategies == expected_strategies def test_auto_parallel_arithmetic_broadcast_left(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul = P.MatMul() self.floordiv = P.FloorDiv() def construct(self, x, y, b): out = self.matmul(x, y) out = self.floordiv(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) net = NetWithLoss(Net()) context.set_auto_parallel_context(parallel_mode="auto_parallel") reset_op_id() x = Tensor(np.ones([64, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 32]), dtype=ms.float32) b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) compile(net, x, y, b, phase="train") strategies = _executor._get_strategy(net) expected_strategies = {'Default/network-Net/FloorDiv-op0': [[4, 2], [1, 4, 2]], 'Default/network-Net/MatMul-op1': [[4, 1], [1, 2]]} assert strategies == expected_strategies