# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor from tests.ut.python.ops.test_math_ops import VirtualLoss import mindspore as ms from mindspore.common import dtype as mstype from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.parallel._utils import _reset_op_id as reset_op_id class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, z, w): predict = self.network(x, y, z, w) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, z, w): return C.grad_all(self.network)(x, y, z, w) # model_parallel test def test_double_star_graph(): class Net(nn.Cell): def __init__(self): super().__init__() self.matmul1 = P.MatMul() self.matmul2 = P.MatMul() self.matmul3 = P.MatMul() self.cast1 = P.Cast() self.cast2 = P.Cast() def construct(self, x, y, z, w): m1_result = self.matmul1(x, y) m2_result = self.matmul2(z, w) m3_result = self.matmul3(self.cast1(m2_result, mstype.float16), self.cast2(m1_result, mstype.float16)) return m3_result size = 8 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([32, 8]), dtype=ms.float32) y = Tensor(np.ones([8, 16]), dtype=ms.float32) z = Tensor(np.ones([8, 16]), dtype=ms.float32) w = Tensor(np.ones([16, 32]), dtype=ms.float32) net = NetWithLoss(Net()) context.set_auto_parallel_context(parallel_mode="auto_parallel") net.set_auto_parallel() reset_op_id() _executor.compile(net, x, y, z, w, phase='train') strategies = _executor._get_strategy(net) expected_strategies = {'Default/network-Net/Cast-op1': [[8, 1]], 'Default/network-Net/Cast-op3': [[1, 8]], 'Default/network-Net/MatMul-op2': [[8, 1], [1, 1]], 'Default/network-Net/MatMul-op4': [[1, 1], [1, 8]], 'Default/network-Net/MatMul-op0': [[1, 8], [8, 1]]} assert strategies == expected_strategies