# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore.nn as nn import mindspore.context as context from mindspore import Tensor, Parameter from mindspore.ops import operations as P from mindspore.communication.management import init class DataParallelNet(nn.Cell): def __init__(self): super(DataParallelNet, self).__init__() weight_init = np.random.rand(512, 64).astype(np.float32) self.weight = Parameter(Tensor(weight_init), name="weight", layerwise_parallel=False) self.fc = P.MatMul() def construct(self, x): x = self.fc(x, self.weight) return x class ModelParallelNet(nn.Cell): def __init__(self): super(ModelParallelNet, self).__init__() weight_init = np.random.rand(512, 64).astype(np.float32) self.weight = Parameter(Tensor(weight_init), name="weight", layerwise_parallel=True) self.fc = P.MatMul() def construct(self, x): x = self.fc(x, self.weight) return x def test_param_broadcast(): context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode="data_parallel", parameter_broadcast=True) init() network = DataParallelNet() network.set_train() predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01) out = network(predict) context.reset_auto_parallel_context() def test_param_not_broadcast(): context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode="data_parallel", parameter_broadcast=False) init() network = ModelParallelNet() network.set_train() predict = Tensor(np.ones([64, 512]).astype(np.float32) * 0.01) out = network(predict) context.reset_auto_parallel_context()