# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor from tests.ut.python.ops.test_math_ops import VirtualLoss from mindspore.common.api import _executor from mindspore.ops import composite as C class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return C.grad_all(self.network)(x, y, b) def compile(net, x, y, b): net.set_auto_parallel() _executor.compile(net, x, y, b) def test_matmul_pow(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.pow = P.Pow().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.pow(out, 2.0) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), ()) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_matmul_exp(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.exp = P.Exp().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.exp(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), ) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_matmul_log(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.log = P.Log().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy1) def construct(self, x, y, b): out = self.matmul(x, y) out = self.log(out) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), ) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_matmul_logical_not(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.logicalnot = P.LogicalNot().set_strategy(strategy2) self.equal = P.Equal().set_strategy(strategy3) def construct(self, x, y, b): out = self.matmul(x, y) out = self.equal(out, b) out = self.logicalnot(out) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), ) strategy3 = ((4, 2), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([128, 64]), dtype=ms.float32) compile(net, x, y, b) def test_matmul_cast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast().set_strategy(strategy2) self.matmul2 = P.MatMul().set_strategy(strategy3) def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float32) out = self.matmul2(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((4, 2), ) strategy3 = ((1, 4), (4, 2)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.int32) compile(net, x, y, b) def test_cast_before_mirror(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float32) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0, cast_before_mirror=True) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float16) compile(net, x, y, b) def test_cast_before_mirror1(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float16) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0, cast_before_mirror=True) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float16) y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_cast_before_mirror2(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float16) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0, cast_before_mirror=False) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float16) y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_cast_before_mirror3(): class Net(nn.Cell): def __init__(self, strategy1): super().__init__() self.matmul = P.MatMul().set_strategy(strategy1) self.cast = P.Cast() def construct(self, x, y, b): out = self.matmul(x, y) b = self.cast(b, ms.float16) out = self.matmul(out, b) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) net = GradWrap(NetWithLoss(Net(strategy1))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float16) y = Tensor(np.ones([32, 64]), dtype=ms.float16) b = Tensor(np.ones([64, 64]), dtype=ms.float32) compile(net, x, y, b) def test_mul_two_cast(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3): super().__init__() self.mul = P.Mul().set_strategy(strategy1) self.mul2 = P.Mul().set_strategy(strategy2) self.cast = P.Cast().set_strategy(strategy3) self.cast2 = P.Cast().set_strategy(strategy3) def construct(self, x, y, b): out = self.mul(x, y) out = self.mul2(out, b) out = self.cast(out, ms.int32) out = self.cast2(out, ms.bool_) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((8, 1), (8, 1)) strategy3 = ((8, 1), ) net = GradWrap(Net(strategy1, strategy2, strategy3)) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([128, 32]), dtype=ms.float32) b = Tensor(np.ones([128, 32]), dtype=ms.float32) compile(net, x, y, b)