# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from mindspore import context import mindspore.nn as nn from mindspore.ops import operations as P from mindspore import Tensor, Parameter, ParameterTuple import mindspore as ms from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import functional as F class NetWithLoss(nn.Cell): def __init__(self, network, strategy3): super(NetWithLoss, self).__init__() self.loss = P.SoftmaxCrossEntropyWithLogits().set_strategy(strategy3) self.network = network def construct(self, x, b): predict = self.network(x) return self.loss(predict, b)[0] class OneStepCell(nn.Cell): def __init__(self, network): super(OneStepCell, self).__init__(auto_prefix=False) self.network = network self.weights = ParameterTuple(network.network.trainable_params()) def construct(self, data, label): weights = self.weights grads = C.grad_by_list(self.network, weights)(data, label) return grads def test_two_weights_parameter(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, weight, weight2): super().__init__() self.weight = Parameter(weight, "w1", requires_grad=True) self.weight2 = Parameter(weight2, "w2", requires_grad=True) self.matmul = P.MatMul().set_strategy(strategy1) self.matmul2 = P.MatMul().set_strategy(strategy2) def construct(self, x): out = self.matmul(x, self.weight) out = self.matmul2(out, self.weight2) return out context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((4, 1), (1, 2)) strategy2 = ((4, 2), (2, 1)) strategy3 = ((8, 1), (8, 1)) x = Tensor(np.ones([64, 32]), dtype=ms.float32) weight = Tensor(np.ones([32, 64]), dtype=ms.float32) weight2 = Tensor(np.ones([64, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) net = Net(strategy1, strategy2, weight, weight2) net_with_loss = NetWithLoss(net, strategy3) train_net = OneStepCell(net_with_loss) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") train_net.set_auto_parallel() _executor.compile(train_net, x, b)