# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ ##############test googlenet example on cifar10################# python eval.py """ import argparse import mindspore.nn as nn from mindspore import context from mindspore.nn.optim.momentum import Momentum from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.common import set_seed from src.config import cifar_cfg, imagenet_cfg from src.dataset import create_dataset_cifar10, create_dataset_imagenet from src.googlenet import GoogleNet from src.CrossEntropySmooth import CrossEntropySmooth set_seed(1) parser = argparse.ArgumentParser(description='googlenet') parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'], help='dataset name.') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') args_opt = parser.parse_args() if __name__ == '__main__': if args_opt.dataset_name == 'cifar10': cfg = cifar_cfg dataset = create_dataset_cifar10(cfg.data_path, 1, False) loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') net = GoogleNet(num_classes=cfg.num_classes) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum, weight_decay=cfg.weight_decay) model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'}) elif args_opt.dataset_name == "imagenet": cfg = imagenet_cfg dataset = create_dataset_imagenet(cfg.val_data_path, 1, False) if not cfg.use_label_smooth: cfg.label_smooth_factor = 0.0 loss = CrossEntropySmooth(sparse=True, reduction="mean", smooth_factor=cfg.label_smooth_factor, num_classes=cfg.num_classes) net = GoogleNet(num_classes=cfg.num_classes) model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) else: raise ValueError("dataset is not support.") device_target = cfg.device_target context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target) if device_target == "Ascend": context.set_context(device_id=cfg.device_id) if args_opt.checkpoint_path is not None: param_dict = load_checkpoint(args_opt.checkpoint_path) print("load checkpoint from [{}].".format(args_opt.checkpoint_path)) else: param_dict = load_checkpoint(cfg.checkpoint_path) print("load checkpoint from [{}].".format(cfg.checkpoint_path)) load_param_into_net(net, param_dict) net.set_train(False) acc = model.eval(dataset) print("accuracy: ", acc)