# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air, onnx, mindir models""" import argparse import numpy as np from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export from src.maskrcnn.mask_rcnn_r50 import MaskRcnn_Infer from src.config import config parser = argparse.ArgumentParser(description='maskrcnn export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="maskrcnn", help="output file name.") parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU', 'CPU'], help='device target (default: Ascend)') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': net = MaskRcnn_Infer(config=config) param_dict = load_checkpoint(args.ckpt_file) param_dict_new = {} for key, value in param_dict.items(): param_dict_new["network." + key] = value load_param_into_net(net, param_dict_new) net.set_train(False) bs = config.test_batch_size img = Tensor(np.zeros([args.batch_size, 3, config.img_height, config.img_width], np.float16)) img_metas = Tensor(np.zeros([args.batch_size, 4], np.float16)) input_data = [img, img_metas] export(net, *input_data, file_name=args.file_name, file_format=args.file_format)