# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import argparse import logging from mindspore import context, Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.data_loader import create_dataset, create_cell_nuclei_dataset from src.unet_medical import UNetMedical from src.unet_nested import NestedUNet, UNet from src.config import cfg_unet from src.utils import UnetEval, TempLoss, dice_coeff device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id) def test_net(data_dir, ckpt_path, cross_valid_ind=1, cfg=None): if cfg['model'] == 'unet_medical': net = UNetMedical(n_channels=cfg['num_channels'], n_classes=cfg['num_classes']) elif cfg['model'] == 'unet_nested': net = NestedUNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes'], use_deconv=cfg['use_deconv'], use_bn=cfg['use_bn'], use_ds=False) elif cfg['model'] == 'unet_simple': net = UNet(in_channel=cfg['num_channels'], n_class=cfg['num_classes']) else: raise ValueError("Unsupported model: {}".format(cfg['model'])) param_dict = load_checkpoint(ckpt_path) load_param_into_net(net, param_dict) net = UnetEval(net) if 'dataset' in cfg and cfg['dataset'] == "Cell_nuclei": valid_dataset = create_cell_nuclei_dataset(data_dir, cfg['img_size'], 1, 1, is_train=False, eval_resize=cfg["eval_resize"], split=0.8) else: _, valid_dataset = create_dataset(data_dir, 1, 1, False, cross_valid_ind, False, do_crop=cfg['crop'], img_size=cfg['img_size']) model = Model(net, loss_fn=TempLoss(), metrics={"dice_coeff": dice_coeff(cfg_unet)}) print("============== Starting Evaluating ============") eval_score = model.eval(valid_dataset, dataset_sink_mode=False)["dice_coeff"] print("============== Cross valid dice coeff is:", eval_score[0]) print("============== Cross valid IOU is:", eval_score[1]) def get_args(): parser = argparse.ArgumentParser(description='Test the UNet on images and target masks', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-d', '--data_url', dest='data_url', type=str, default='data/', help='data directory') parser.add_argument('-p', '--ckpt_path', dest='ckpt_path', type=str, default='ckpt_unet_medical_adam-1_600.ckpt', help='checkpoint path') return parser.parse_args() if __name__ == '__main__': logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s') args = get_args() print("Testing setting:", args) test_net(data_dir=args.data_url, ckpt_path=args.ckpt_path, cross_valid_ind=cfg_unet['cross_valid_ind'], cfg=cfg_unet)