# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train_imagenet.""" import os import sys import argparse import random import math import numpy as np from test_dataset import create_dataset from config import config from mindspore import context from mindspore.nn.dynamic_lr import piecewise_constant_lr, warmup_lr import mindspore.dataset.engine as de from mindspore.train.serialization import load_checkpoint from model.model import resnet50, TrainStepWrap, NetWithLossClass from utils.distance import compute_dist, compute_score random.seed(1) np.random.seed(1) de.config.set_seed(1) parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--data_url', type=str, default=None, help='Dataset path') parser.add_argument('--train_url', type=str, default=None, help='Train output path') args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) local_data_url = 'data' local_train_url = 'ckpt' class Logger(): '''Log''' def __init__(self, logFile="log_max.txt"): self.terminal = sys.stdout self.log = open(logFile, 'a') def write(self, message): self.terminal.write(message) self.log.write(message) self.log.flush() def flush(self): pass sys.stdout = Logger("log/log.txt") if __name__ == '__main__': query_dataset = create_dataset(data_dir=os.path.join('/home/dingfeifei/datasets', \ 'test/query'), p=config.p, k=config.k) gallery_dataset = create_dataset(data_dir=os.path.join('/home/dingfeifei/datasets', \ 'test/gallery'), p=config.p, k=config.k) epoch_size = config.epoch_size net = resnet50(class_num=config.class_num, is_train=False) loss_net = NetWithLossClass(net, is_train=False) base_lr = config.learning_rate warm_up_epochs = config.lr_warmup_epochs lr_decay_epochs = config.lr_decay_epochs lr_decay_factor = config.lr_decay_factor step_size = math.ceil(config.class_num / config.p) lr_decay_steps = [] lr_decay = [] for i, v in enumerate(lr_decay_epochs): lr_decay_steps.append(v * step_size) lr_decay.append(base_lr * lr_decay_factor ** i) lr_1 = warmup_lr(base_lr, step_size*warm_up_epochs, step_size, warm_up_epochs) lr_2 = piecewise_constant_lr(lr_decay_steps, lr_decay) lr = lr_1 + lr_2 train_net = TrainStepWrap(loss_net, lr, config.momentum, is_train=False) load_checkpoint("checkpoints/40.ckpt", net=train_net) q_feats, q_labels, g_feats, g_labels = [], [], [], [] for data, gt_classes, theta in query_dataset: output = train_net(data, gt_classes, theta) output = output.asnumpy() label = gt_classes.asnumpy() q_feats.append(output) q_labels.append(label) q_feats = np.vstack(q_feats) q_labels = np.hstack(q_labels) for data, gt_classes, theta in gallery_dataset: output = train_net(data, gt_classes, theta) output = output.asnumpy() label = gt_classes.asnumpy() g_feats.append(output) g_labels.append(label) g_feats = np.vstack(g_feats) g_labels = np.hstack(g_labels) q_g_dist = compute_dist(q_feats, g_feats, dis_type='cosine') mAP, cmc_scores = compute_score(q_g_dist, q_labels, g_labels) print(mAP, cmc_scores)