# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train or eval dataset. """ import mindspore.common.dtype as mstype import mindspore.dataset.engine as de import mindspore.dataset.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from config import config from dataset.MGDataset import DistributedPKSampler, MGDataset def create_dataset(data_dir, p=16, k=8): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. p(int): randomly choose p classes from all classes. k(int): randomly choose k images from each of the chosen p classes. p * k is the batchsize. Returns: dataset """ dataset = MGDataset(data_dir) sampler = DistributedPKSampler(dataset, p=p, k=k) de_dataset = de.GeneratorDataset(dataset, ["image", "label1", "label2"], sampler=sampler) resize_height = config.image_height resize_width = config.image_width rescale = 1.0 / 255.0 shift = 0.0 resize_op = CV.Resize((resize_height, resize_width)) rescale_op = CV.Rescale(rescale, shift) normalize_op = CV.Normalize([0.486, 0.459, 0.408], [0.229, 0.224, 0.225]) change_swap_op = CV.HWC2CHW() trans = [] trans += [resize_op, rescale_op, normalize_op, change_swap_op] type_cast_op_label1 = C.TypeCast(mstype.int32) type_cast_op_label2 = C.TypeCast(mstype.float32) de_dataset = de_dataset.map(input_columns="label1", operations=type_cast_op_label1) de_dataset = de_dataset.map(input_columns="label2", operations=type_cast_op_label2) de_dataset = de_dataset.map(input_columns="image", operations=trans) de_dataset = de_dataset.batch(p*k, drop_remainder=True) return de_dataset