# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_graph_summary """ import logging import os import numpy as np import mindspore.nn as nn from mindspore import Model, context from mindspore.nn.optim import Momentum from mindspore.train.summary import SummaryRecord from mindspore.train.callback import SummaryCollector from .....dataset_mock import MindData CUR_DIR = os.getcwd() SUMMARY_DIR = CUR_DIR + "/test_temp_summary_event_file/" GRAPH_TEMP = CUR_DIR + "/ms_output-resnet50.pb" log = logging.getLogger("test") log.setLevel(level=logging.ERROR) class Net(nn.Cell): """ Net definition """ def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid') self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0 def construct(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.flatten(x) out = self.fc(x) return out class LossNet(nn.Cell): """ LossNet definition """ def __init__(self): super(LossNet, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid') self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0 self.loss = nn.SoftmaxCrossEntropyWithLogits() def construct(self, x, y): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.flatten(x) x = self.fc(x) out = self.loss(x, y) return out def get_model(): """ get_model """ net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) return model def get_dataset(): """ get_datasetdataset """ dataset_types = (np.float32, np.float32) dataset_shapes = ((2, 3, 224, 224), (2, 3)) dataset = MindData(size=2, batch_size=2, np_types=dataset_types, output_shapes=dataset_shapes, input_indexs=(0, 1)) return dataset # Test 1: summary sample of graph def test_graph_summary_sample(): """ test_graph_summary_sample """ log.debug("begin test_graph_summary_sample") dataset = get_dataset() net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optim = Momentum(net.trainable_params(), 0.1, 0.9) context.set_context(mode=context.GRAPH_MODE) model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) with SummaryRecord(SUMMARY_DIR, file_suffix="_MS_GRAPH", network=model._train_network) as test_writer: model.train(2, dataset) for i in range(1, 5): test_writer.record(i) def test_graph_summary_callback(): dataset = get_dataset() net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optim = Momentum(net.trainable_params(), 0.1, 0.9) context.set_context(mode=context.GRAPH_MODE) model = Model(net, loss_fn=loss, optimizer=optim, metrics=None) summary_collector = SummaryCollector(SUMMARY_DIR, collect_freq=1, keep_default_action=False, collect_specified_data={'collect_graph': True}) model.train(1, dataset, callbacks=[summary_collector])