# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ export checkpoint file into models""" import argparse import numpy as np from mindspore import Tensor, context from mindspore.train.serialization import load_param_into_net, export from src.transformer_model import TransformerModel from src.eval_config import cfg, transformer_net_cfg from eval import load_weights parser = argparse.ArgumentParser(description='transformer export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--file_name", type=str, default="transformer", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': tfm_model = TransformerModel(config=transformer_net_cfg, is_training=False, use_one_hot_embeddings=False) parameter_dict = load_weights(cfg.model_file) load_param_into_net(tfm_model, parameter_dict) source_ids = Tensor(np.ones((transformer_net_cfg.batch_size, transformer_net_cfg.seq_length)).astype(np.int32)) source_mask = Tensor(np.ones((transformer_net_cfg.batch_size, transformer_net_cfg.seq_length)).astype(np.int32)) export(tfm_model, source_ids, source_mask, file_name=args.file_name, file_format=args.file_format)