# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ncf export file""" import argparse import numpy as np from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export import src.constants as rconst from src.config import cfg from ncf import NCFModel, PredictWithSigmoid parser = argparse.ArgumentParser(description='ncf export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--dataset", type=str, default="ml-1m", choices=["ml-1m", "ml-20m"], help="Dataset.") parser.add_argument("--file_name", type=str, default="ncf", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU", "CPU"], help="device target (default: Ascend)") args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == "__main__": topk = rconst.TOP_K num_eval_neg = rconst.NUM_EVAL_NEGATIVES if args.dataset == "ml-1m": num_eval_users = 6040 num_eval_items = 3706 elif args.dataset == "ml-20m": num_eval_users = 138493 num_eval_items = 26744 else: raise ValueError("not supported dataset") ncf_net = NCFModel(num_users=num_eval_users, num_items=num_eval_items, num_factors=cfg.num_factors, model_layers=cfg.layers, mf_regularization=0, mlp_reg_layers=[0.0, 0.0, 0.0, 0.0], mf_dim=16) param_dict = load_checkpoint(args.ckpt_file) load_param_into_net(ncf_net, param_dict) network = PredictWithSigmoid(ncf_net, topk, num_eval_neg) users = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32)) items = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.int32)) masks = Tensor(np.zeros([cfg.eval_batch_size, 1]).astype(np.float32)) input_data = [users, items, masks] export(network, *input_data, file_name=args.file_name, file_format=args.file_format)