# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ create train or eval dataset. """ import os import mindspore.common.dtype as mstype import mindspore.dataset.engine as de import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.c_transforms as C2 from mindspore.communication.management import init, get_rank, get_group_size from config import config def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"): """ create a train or eval dataset Args: dataset_path(string): the path of dataset. do_train(bool): whether dataset is used for train or eval. repeat_num(int): the repeat times of dataset. Default: 1 batch_size(int): the batch size of dataset. Default: 32 target(str): the device target. Default: Ascend Returns: dataset """ if target == "Ascend": device_num = int(os.getenv("DEVICE_NUM")) rank_id = int(os.getenv("RANK_ID")) else: init("nccl") rank_id = get_rank() device_num = get_group_size() if device_num == 1: ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True) else: ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True, num_shards=device_num, shard_id=rank_id) # define map operations trans = [] if do_train: trans += [ C.RandomCrop((32, 32), (4, 4, 4, 4)), C.RandomHorizontalFlip(prob=0.5) ] trans += [ C.Resize((config.image_height, config.image_width)), C.Rescale(1.0 / 255.0, 0.0), C.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]), C.HWC2CHW() ] type_cast_op = C2.TypeCast(mstype.int32) ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op) ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans) # apply batch operations ds = ds.batch(batch_size, drop_remainder=True) # apply dataset repeat operation ds = ds.repeat(repeat_num) return ds