# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Convert ckpt to air.""" import os import argparse import numpy as np from mindspore import context from mindspore import Tensor from mindspore.train.serialization import export, load_checkpoint, load_param_into_net from src.FaceDetection.yolov3 import HwYolov3 as backbone_HwYolov3 from src.config import config devid = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=devid) def save_air(args): '''save air''' print('============= yolov3 start save air ==================') num_classes = config.num_classes anchors_mask = config.anchors_mask num_anchors_list = [len(x) for x in anchors_mask] network = backbone_HwYolov3(num_classes, num_anchors_list, args) if os.path.isfile(args.pretrained): param_dict = load_checkpoint(args.pretrained) param_dict_new = {} for key, values in param_dict.items(): if key.startswith('moments.'): continue elif key.startswith('network.'): param_dict_new[key[8:]] = values else: param_dict_new[key] = values load_param_into_net(network, param_dict_new) print('load model {} success'.format(args.pretrained)) input_data = np.random.uniform(low=0, high=1.0, size=(args.batch_size, 3, 448, 768)).astype(np.float32) tensor_input_data = Tensor(input_data) export(network, tensor_input_data, file_name=args.pretrained.replace('.ckpt', '_' + str(args.batch_size) + 'b.air'), file_format='AIR') print("export model success.") if __name__ == "__main__": parser = argparse.ArgumentParser(description='Convert ckpt to air') parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load') parser.add_argument('--batch_size', type=int, default=8, help='batch size') arg = parser.parse_args() save_air(arg)