# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train FCN8s.""" import os import argparse from mindspore import context, Tensor from mindspore.train.model import Model from mindspore.context import ParallelMode import mindspore.nn as nn from mindspore.train.callback import ModelCheckpoint, CheckpointConfig from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.communication.management import init, get_rank, get_group_size from mindspore.train.callback import LossMonitor, TimeMonitor from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.common import set_seed from src.data import dataset as data_generator from src.loss import loss from src.utils.lr_scheduler import CosineAnnealingLR from src.nets.FCN8s import FCN8s from src.config import FCN8s_VOC2012_cfg set_seed(1) def parse_args(): parser = argparse.ArgumentParser('mindspore FCN training') parser.add_argument('--device_id', type=int, default=0, help='device id of GPU or Ascend. (Default: None)') args, _ = parser.parse_known_args() return args def train(): args = parse_args() cfg = FCN8s_VOC2012_cfg device_num = int(os.environ.get("DEVICE_NUM", 1)) context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, save_graphs=False, device_target="Ascend", device_id=args.device_id) # init multicards training args.rank = 0 args.group_size = 1 if device_num > 1: parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=device_num) init() args.rank = get_rank() args.group_size = get_group_size() # dataset dataset = data_generator.SegDataset(image_mean=cfg.image_mean, image_std=cfg.image_std, data_file=cfg.data_file, batch_size=cfg.batch_size, crop_size=cfg.crop_size, max_scale=cfg.max_scale, min_scale=cfg.min_scale, ignore_label=cfg.ignore_label, num_classes=cfg.num_classes, num_readers=2, num_parallel_calls=4, shard_id=args.rank, shard_num=args.group_size) dataset = dataset.get_dataset(repeat=1) net = FCN8s(n_class=cfg.num_classes) loss_ = loss.SoftmaxCrossEntropyLoss(cfg.num_classes, cfg.ignore_label) # load pretrained vgg16 parameters to init FCN8s if cfg.ckpt_vgg16: param_vgg = load_checkpoint(cfg.ckpt_vgg16) param_dict = {} for layer_id in range(1, 6): sub_layer_num = 2 if layer_id < 3 else 3 for sub_layer_id in range(sub_layer_num): # conv param y_weight = 'conv{}.{}.weight'.format(layer_id, 3 * sub_layer_id) x_weight = 'vgg16_feature_extractor.conv{}_{}.0.weight'.format(layer_id, sub_layer_id + 1) param_dict[y_weight] = param_vgg[x_weight] # BatchNorm param y_gamma = 'conv{}.{}.gamma'.format(layer_id, 3 * sub_layer_id + 1) y_beta = 'conv{}.{}.beta'.format(layer_id, 3 * sub_layer_id + 1) x_gamma = 'vgg16_feature_extractor.conv{}_{}.1.gamma'.format(layer_id, sub_layer_id + 1) x_beta = 'vgg16_feature_extractor.conv{}_{}.1.beta'.format(layer_id, sub_layer_id + 1) param_dict[y_gamma] = param_vgg[x_gamma] param_dict[y_beta] = param_vgg[x_beta] load_param_into_net(net, param_dict) # load pretrained FCN8s elif cfg.ckpt_pre_trained: param_dict = load_checkpoint(cfg.ckpt_pre_trained) load_param_into_net(net, param_dict) # optimizer iters_per_epoch = dataset.get_dataset_size() lr_scheduler = CosineAnnealingLR(cfg.base_lr, cfg.train_epochs, iters_per_epoch, cfg.train_epochs, warmup_epochs=0, eta_min=0) lr = Tensor(lr_scheduler.get_lr()) # loss scale manager_loss_scale = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False) optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.0001, loss_scale=cfg.loss_scale) model = Model(net, loss_fn=loss_, loss_scale_manager=manager_loss_scale, optimizer=optimizer, amp_level="O3") # callback for saving ckpts time_cb = TimeMonitor(data_size=iters_per_epoch) loss_cb = LossMonitor() cbs = [time_cb, loss_cb] if args.rank == 0: config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_steps, keep_checkpoint_max=cfg.keep_checkpoint_max) ckpoint_cb = ModelCheckpoint(prefix=cfg.model, directory=cfg.train_dir, config=config_ck) cbs.append(ckpoint_cb) model.train(cfg.train_epochs, dataset, callbacks=cbs) if __name__ == '__main__': train()