# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test direction model.""" import argparse import os import random import numpy as np from src.cnn_direction_model import CNNDirectionModel from src.config import config1 as config from src.dataset import create_dataset_eval from mindspore import context from mindspore import dataset as de from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') args_opt = parser.parse_args() random.seed(1) np.random.seed(1) de.config.set_seed(1) if __name__ == '__main__': # init context context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False) device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id) # create dataset dataset_name = config.dataset_name dataset_lr, dataset_rl = create_dataset_eval(args_opt.dataset_path + "/" + dataset_name + ".mindrecord0", config=config, dataset_name=dataset_name) step_size = dataset_lr.get_dataset_size() print("step_size ", step_size) # define net net = CNNDirectionModel([3, 64, 48, 48, 64], [64, 48, 48, 64, 64], [256, 64], [64, 512]) # load checkpoint param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) # define loss, model loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="sum") # define model model = Model(net, loss_fn=loss, metrics={'top_1_accuracy'}) # eval model res_lr = model.eval(dataset_lr, dataset_sink_mode=False) res_rl = model.eval(dataset_rl, dataset_sink_mode=False) print("result on upright images:", res_lr, "ckpt=", args_opt.checkpoint_path) print("result on 180 degrees rotated images:", res_rl, "ckpt=", args_opt.checkpoint_path)