# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Train mobilenetV2 on ImageNet.""" import os import time import random import numpy as np from mindspore import Tensor from mindspore.nn import WithLossCell, TrainOneStepCell from mindspore.nn.optim.momentum import Momentum from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.common import dtype as mstype from mindspore.communication.management import get_rank from mindspore.train.model import Model from mindspore.train.loss_scale_manager import FixedLossScaleManager from mindspore.train.serialization import save_checkpoint from mindspore.common import set_seed from src.dataset import create_dataset, extract_features from src.lr_generator import get_lr from src.config import set_config from src.args import train_parse_args from src.utils import context_device_init, switch_precision, config_ckpoint from src.models import CrossEntropyWithLabelSmooth, define_net, load_ckpt set_seed(1) if __name__ == '__main__': args_opt = train_parse_args() args_opt.dataset_path = os.path.abspath(args_opt.dataset_path) config = set_config(args_opt) start = time.time() print(f"train args: {args_opt}\ncfg: {config}") #set context and device init context_device_init(config) # define network backbone_net, head_net, net = define_net(config, args_opt.is_training) dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, config=config) step_size = dataset.get_dataset_size() if args_opt.pretrain_ckpt: if args_opt.freeze_layer == "backbone": load_ckpt(backbone_net, args_opt.pretrain_ckpt, trainable=False) step_size = extract_features(backbone_net, args_opt.dataset_path, config) elif args_opt.filter_head: load_ckpt(backbone_net, args_opt.pretrain_ckpt) else: load_ckpt(net, args_opt.pretrain_ckpt) if step_size == 0: raise ValueError("The step_size of dataset is zero. Check if the images' count of train dataset is more \ than batch_size in config.py") # Currently, only Ascend support switch precision. switch_precision(net, mstype.float16, config) # define loss if config.label_smooth > 0: loss = CrossEntropyWithLabelSmooth( smooth_factor=config.label_smooth, num_classes=config.num_classes) else: loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') epoch_size = config.epoch_size # get learning rate lr = Tensor(get_lr(global_step=0, lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size)) if args_opt.pretrain_ckpt == "" or args_opt.freeze_layer != "backbone": loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, \ config.weight_decay, config.loss_scale) model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale) cb = config_ckpoint(config, lr, step_size) print("============== Starting Training ==============") model.train(epoch_size, dataset, callbacks=cb) print("============== End Training ==============") else: opt = Momentum(filter(lambda x: x.requires_grad, head_net.get_parameters()), lr, config.momentum, config.weight_decay) network = WithLossCell(head_net, loss) network = TrainOneStepCell(network, opt) network.set_train() features_path = args_opt.dataset_path + '_features' idx_list = list(range(step_size)) rank = 0 if config.run_distribute: rank = get_rank() save_ckpt_path = os.path.join(config.save_checkpoint_path, 'ckpt_' + str(rank) + '/') if not os.path.isdir(save_ckpt_path): os.mkdir(save_ckpt_path) for epoch in range(epoch_size): random.shuffle(idx_list) epoch_start = time.time() losses = [] for j in idx_list: feature = Tensor(np.load(os.path.join(features_path, f"feature_{j}.npy"))) label = Tensor(np.load(os.path.join(features_path, f"label_{j}.npy"))) losses.append(network(feature, label).asnumpy()) epoch_mseconds = (time.time()-epoch_start) * 1000 per_step_mseconds = epoch_mseconds / step_size print("epoch[{}/{}], iter[{}] cost: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}"\ .format(epoch + 1, epoch_size, step_size, epoch_mseconds, per_step_mseconds, np.mean(np.array(losses)))) if (epoch + 1) % config.save_checkpoint_epochs == 0: save_checkpoint(net, os.path.join(save_ckpt_path, f"mobilenetv2_{epoch+1}.ckpt")) print("total cost {:5.4f} s".format(time.time() - start))