# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test accuracy""" import math import numpy as np import pytest from mindspore.nn.metrics import Accuracy from mindspore import Tensor def test_classification_accuracy(): """test_classification_accuracy""" x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([1, 0, 1])) y2 = Tensor(np.array([[0, 1], [1, 0], [0, 1]])) metric = Accuracy('classification') metric.clear() metric.update(x, y) accuracy = metric.eval() accuracy2 = metric(x, y2) assert math.isclose(accuracy, 2/3) assert math.isclose(accuracy2, 2/3) def test_multilabel_accuracy(): x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])) y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1], [0, 0, 0, 1]])) metric = Accuracy('multilabel') metric.clear() metric.update(x, y) accuracy = metric.eval() assert accuracy == 1/3 def test_shape_accuracy(): x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])) y = Tensor(np.array([[0, 1, 1, 1], [0, 1, 1, 1]])) metric = Accuracy('multilabel') metric.clear() with pytest.raises(ValueError): metric.update(x, y) def test_shape_accuracy2(): x = Tensor(np.array([[0, 1, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]])) y = Tensor(np.array([0, 1, 1, 1])) metric = Accuracy('multilabel') metric.clear() with pytest.raises(ValueError): metric.update(x, y) def test_shape_accuracy3(): x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array([[1, 0, 1], [1, 1, 1]])) metric = Accuracy('classification') metric.clear() with pytest.raises(ValueError): metric.update(x, y) def test_shape_accuracy4(): x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]])) y = Tensor(np.array(1)) metric = Accuracy('classification') metric.clear() with pytest.raises(ValueError): metric.update(x, y) def test_type_accuracy(): with pytest.raises(TypeError): Accuracy('test')