/** * Copyright 2019 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "common/common_test.h" #include "frontend/parallel/strategy.h" #include "frontend/parallel/ops_info/virtual_dataset_info.h" #include "frontend/parallel/device_manager.h" #include "frontend/parallel/step_parallel.h" namespace mindspore { namespace parallel { class VirtualDatasetInfo; using VirtualDatasetInfoPtr = std::shared_ptr; VirtualDatasetInfoPtr virtual_dataset; class TestVirtualDatasetInfo : public UT::Common { public: TestVirtualDatasetInfo() {} void SetUp(); void TearDown() {} }; void TestVirtualDatasetInfo::SetUp() { RankList dev_list; for (int32_t i = 0; i < 130; i++) { dev_list.push_back(i); } RankList stage_map; stage_map.push_back(16); stage_map.push_back(114); int32_t local_dev = 0; // create a new g_device_manager g_device_manager = std::make_shared(); g_device_manager->Init(dev_list, local_dev, stage_map, "hccl"); std::unordered_map attr; Shapes inputs_shape = {{128, 32}, {1280, 320}, {12800, 3200}}; Shapes outputs_shape = {{128, 32}, {1280, 320}, {12800, 3200}}; virtual_dataset = std::make_shared("virtual_dataset_info", inputs_shape, outputs_shape, attr); } TEST_F(TestVirtualDatasetInfo, InferDevMatrixShape1) { Strategys inputs = {{16, 1}, {16, 1}, {16, 1}}; StrategyPtr strategy = NewStrategy(0, inputs); virtual_dataset->Init(strategy); Shape dev_matrix_shape = virtual_dataset->dev_matrix_shape(); Shape expect = {16}; ASSERT_EQ(dev_matrix_shape, expect); } TEST_F(TestVirtualDatasetInfo, InferDevMatrixShape2) { Strategys inputs = {{8, 1}, {8, 1}, {8, 1}}; StrategyPtr strategy = NewStrategy(0, inputs); virtual_dataset->Init(strategy); Shape dev_matrix_shape = virtual_dataset->dev_matrix_shape(); Shape expect = {8, 2}; ASSERT_EQ(dev_matrix_shape, expect); } TEST_F(TestVirtualDatasetInfo, InferSliceShape1) { Strategys str = {{8, 1}, {8, 1}, {8, 1}}; StrategyPtr strategy = NewStrategy(0, str); virtual_dataset->Init(strategy); std::vector inputs = virtual_dataset->inputs_tensor_info(); std::vector outputs = virtual_dataset->outputs_tensor_info(); Shape input_slice_shape_expect = {16, 32}; Shape output_slice_shape_expect = {16, 32}; TensorInfo input_tensor_info = inputs.at(0); TensorInfo output_tensor_info = outputs.at(0); Shape input_slice_shape = input_tensor_info.slice_shape(); Shape output_slice_shape = output_tensor_info.slice_shape(); ASSERT_EQ(input_slice_shape, input_slice_shape_expect); ASSERT_EQ(output_slice_shape, output_slice_shape_expect); Shape input_slice_shape_expect1 = {160, 320}; Shape output_slice_shape_expect1 = {160, 320}; TensorInfo input_tensor_info1 = inputs.at(1); TensorInfo output_tensor_info1 = outputs.at(1); Shape input_slice_shape1 = input_tensor_info1.slice_shape(); Shape output_slice_shape1 = output_tensor_info1.slice_shape(); ASSERT_EQ(input_slice_shape1, input_slice_shape_expect1); ASSERT_EQ(output_slice_shape1, output_slice_shape_expect1); Shape input_slice_shape_expect2 = {1600, 3200}; Shape output_slice_shape_expect2 = {1600, 3200}; TensorInfo input_tensor_info2 = inputs.at(2); TensorInfo output_tensor_info2 = outputs.at(2); Shape input_slice_shape2 = input_tensor_info2.slice_shape(); Shape output_slice_shape2 = output_tensor_info2.slice_shape(); ASSERT_EQ(input_slice_shape2, input_slice_shape_expect2); ASSERT_EQ(output_slice_shape2, output_slice_shape_expect2); } TEST_F(TestVirtualDatasetInfo, GetTensorLayout1) { Strategys str = {{8, 1}, {8, 1}, {8, 1}}; StrategyPtr strategy = NewStrategy(0, str); virtual_dataset->Init(strategy); std::vector inputs = virtual_dataset->inputs_tensor_info(); std::vector outputs = virtual_dataset->outputs_tensor_info(); TensorMap input_expect = {1, -1}; TensorMap output_expect = {1, -1}; TensorInfo input_tensor_info = inputs.at(0); TensorInfo output_tensor_info = outputs.at(0); Map input_tensor_map = input_tensor_info.tensor_layout().origin_tensor_map(); Map output_tensor_map = output_tensor_info.tensor_layout().origin_tensor_map(); ASSERT_EQ(input_tensor_map.array(), input_expect); ASSERT_EQ(output_tensor_map.array(), output_expect); } TEST_F(TestVirtualDatasetInfo, GetForwardOp1) { Strategys inputs = {{8, 1}, {8, 1}, {8, 1}}; StrategyPtr strategy = NewStrategy(0, inputs); virtual_dataset->Init(strategy); OperatorVector forward_op = virtual_dataset->forward_op(); size_t size = forward_op.size(); ASSERT_EQ(size, 0); } TEST_F(TestVirtualDatasetInfo, GetMirrorOPs1) { Strategys inputs = {{8, 1}, {8, 1}, {8, 1}}; StrategyPtr strategy = NewStrategy(0, inputs); virtual_dataset->Init(strategy); MirrorOps mirror_ops = virtual_dataset->mirror_ops(); size_t size = mirror_ops.size(); // no broadcast ASSERT_EQ(size, 0); // ASSERT_EQ(size, 3); } } // namespace parallel } // namespace mindspore