# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b, a): predict = self.network(x, y, b, a) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b, a): return C.grad_all(self.network)(x, y, b, a) def test_two_matmul(): class Net(nn.Cell): def __init__(self, strategy1, strategy2, strategy3, strategy4): super().__init__() self.matmul1 = P.MatMul().set_strategy(strategy1) self.matmul2 = P.MatMul().set_strategy(strategy2) self.matmul3 = P.MatMul().set_strategy(strategy3) self.matmul4 = P.MatMul().set_strategy(strategy4) def construct(self, x, y, b, a): out = self.matmul1(x, y) out1 = self.matmul2(out, b) out2 = self.matmul3(out, a) out3 = self.matmul4(out1, out2) return out3 context.set_auto_parallel_context(device_num=8, global_rank=0) strategy1 = ((2, 2), (2, 2)) strategy2 = ((1, 8), (8, 1)) strategy3 = ((4, 1), (1, 2)) strategy4 = ((4, 2), (2, 1)) net = GradWrap(NetWithLoss(Net(strategy1, strategy2, strategy3, strategy4))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 128]), dtype=ms.float32) b = Tensor(np.ones([128, 128]), dtype=ms.float32) a = Tensor(np.ones([128, 128]), dtype=ms.float32) net.set_auto_parallel() _executor.compile(net, x, y, b, a)