# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_ascend_control_sink """ import pytest import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore.ops import operations as op from mindspore.common import dtype as mstype from mindspore.common.tensor import Tensor from mindspore.common.parameter import Parameter from mindspore.common.initializer import initializer class ControlSimpleIf(nn.Cell): def __init__(self): super().__init__() self.addn = op.AddN() def construct(self, x, y, z, input1, input2): addn1 = self.addn([input1, input1, input1]) addn2 = self.addn([input2, input2, input2]) addn11 = self.addn([addn1, addn1, addn1]) addn22 = self.addn([addn2, addn2, addn2]) cond1 = x > y cond2 = y > z # dodge pylint if cond1 and cond2: out = self.addn([addn11, addn11]) else: out = self.addn([addn22, addn22]) out_me = self.addn([out, input1]) return out_me class ControlSimpleIfWithAssign(nn.Cell): def __init__(self, input_shape): super().__init__() self.addn = op.AddN() self.assign = op.Assign() self.input_data = Parameter(initializer(1, input_shape, mstype.float32), name="var") def construct(self, x, y, input_data): if x > y: out = self.addn([input_data, input_data, input_data]) else: out = self.assign(self.input_data, input_data) return out class ControlIfinIf(nn.Cell): """pass""" def construct(self, x, y): if x > y: x = x + 1 if y < 0: y = y + 1 else: y = y + 2 else: x = x + 2 x = x + y return x class ControlIfbyIfbyIf(nn.Cell): def __init__(self): super().__init__() self.addn = op.AddN() def construct(self, x, y, cond1, cond2, input_data): tri_in = self.addn([input_data, input_data, input_data]) if x > y: addn_1 = self.addn([tri_in, tri_in]) else: addn_1 = self.addn([tri_in, tri_in, tri_in]) if cond1: addn_2 = self.addn([addn_1, addn_1]) else: addn_2 = self.addn([addn_1, addn_1, addn_1]) if cond2: out = self.addn([addn_2, addn_2, addn_2]) else: out = self.addn([addn_2, addn_2]) return out class ControlSimpleWhile(nn.Cell): def __init__(self): super().__init__() self.addn = op.AddN() def construct(self, x, y, input_data): out = input_data while x: out = self.addn([input_data, input_data, input_data]) x = y return out class ControlMixedWhileIf(nn.Cell): def __init__(self): super().__init__() self.assign = op.Assign() self.var = Parameter(initializer(1, (1), mstype.float32), name="var") def construct(self, x, y, z, c2, c4): out = c4 self.assign(self.var, c4) while x < c2: y = c4 self.assign(self.var, c4) while y < c2 and x < c2: if 2 * y < c2: y = y + 2 else: y = y + 1 out = out + y z = c4 self.assign(self.var, c4) while z < c2: z = z + 1 out = out + z x = x + 1 out = out + x while x < 2 * c2: y = c4 self.assign(self.var, c4) x = x + 1 while y < c2: z = c4 self.assign(self.var, c4) while z < c2: z = z + 1 if x < c2: y = y - 1 else: y = y + 1 out = out + z out = out + y out = out + x return out class AndOperation(nn.Cell): def __init__(self): super().__init__() self.reduce_sum = op.ReduceSum() def construct(self, x, y): x_sum = self.reduce_sum(x) y_sum = self.reduce_sum(y) out = x_sum and y_sum return out class OrOperation(nn.Cell): def __init__(self): super().__init__() self.reduce_sum = op.ReduceSum() def construct(self, x, y): x_sum = self.reduce_sum(x) y_sum = self.reduce_sum(y) out = x_sum or y_sum return out class NotOperation(nn.Cell): def __init__(self): super().__init__() self.reduce_sum = op.ReduceSum() def construct(self, x): x_sum = self.reduce_sum(x) return not x_sum @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_simple_if(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") x = np.array(3).astype(np.float32) y = np.array(2).astype(np.float32) z = np.array(3).astype(np.float32) input_shape = (127, 7, 53, 31) input1 = np.random.randn(*input_shape).astype(np.float32) input2 = np.random.randn(*input_shape).astype(np.float32) net = ControlSimpleIf() output = net(Tensor(x), Tensor(y), Tensor(z), Tensor(input1), Tensor(input2)) expect = input2 * 3 * 3 * 2 + input1 assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_simple_if_with_assign(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") x = np.array(0).astype(np.float32) y = np.array(1).astype(np.float32) input_shape = (127, 7, 53, 31) input_data = np.random.randn(*input_shape).astype(np.float32) net = ControlSimpleIfWithAssign(input_shape) output = net(Tensor(x), Tensor(y), Tensor(input_data)) expect = input_data assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_in_if(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") x = np.array(2.345678).astype(np.float32) y = np.array(1.234567).astype(np.float32) net = ControlIfinIf() output = net(Tensor(x), Tensor(y)) expect = x + y + 3 assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_if_by_if_by_if(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") x = np.array(2.345678).astype(np.float32) y = np.array(1.234567).astype(np.float32) cond1 = np.array(True).astype(np.bool) cond2 = np.array(False).astype(np.bool) input_shape = (127, 7, 53, 31) input_data = np.random.randn(*input_shape).astype(np.float32) net = ControlIfbyIfbyIf() output = net(Tensor(x), Tensor(y), Tensor(cond1), Tensor(cond2), Tensor(input_data)) expect = input_data * 3 * 2 * 2 * 2 assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_simple_while(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") x = np.array(True).astype(np.bool) y = np.array(False).astype(np.bool) input_shape = (127, 7, 53, 31) input_data = np.random.randn(*input_shape).astype(np.float32) net = ControlSimpleWhile() output = net(Tensor(x), Tensor(y), Tensor(input_data)) expect = input_data * 3 assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_mixed_while_if(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") x = np.array(2).astype(np.int32) y = np.array(14).astype(np.int32) z = np.array(1).astype(np.int32) c2 = Tensor([14], mstype.int32) c4 = Tensor([0], mstype.int32) net = ControlMixedWhileIf() output = net(Tensor(x), Tensor(y), Tensor(z), c2, c4) expect = np.array(3318).astype(np.int32) assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_and_or_operation(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") x = np.array([0, 1]).astype(np.float32) y = np.array([0, 0]).astype(np.float32) net = AndOperation() output = net(Tensor(x), Tensor(y)) expect = np.sum(x) and np.sum(y) assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) net = OrOperation() output = net(Tensor(x), Tensor(y)) expect = np.sum(x) or np.sum(y) assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) net = NotOperation() output = net(Tensor(x)) expect = not np.sum(x) assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)