# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore.ops import composite as C import mindspore.common.dtype as mstype import mindspore.nn as nn import mindspore.context as context from mindspore.common.tensor import Tensor class Net(nn.Cell): def construct(self, x, y): while x < y: x = x * x + 1 return x class GradNet(nn.Cell): def __init__(self, net): super().__init__() self.net = net self.grad_op = C.GradOperation(get_all=True) def construct(self, x, y): gradient_function = self.grad_op(self.net) return gradient_function(x, y) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_while_grad(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True) x = Tensor([2.0], dtype=mstype.float32) y = Tensor([2.0], dtype=mstype.float32) GradNet(Net())(x, y)