# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export AIR file.""" import argparse import numpy as np from mindspore import Tensor from mindspore import context from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.serialization import export from src.nets import net_factory context.set_context(mode=context.GRAPH_MODE, save_graphs=False) if __name__ == '__main__': parser = argparse.ArgumentParser(description='checkpoint export') parser.add_argument('--checkpoint', type=str.lower, default='', help='checkpoint of deeplabv3 (Default: None)') parser.add_argument('--model', type=str.lower, default='deeplab_v3_s8', choices=['deeplab_v3_s16', 'deeplab_v3_s8'], help='Select model structure (Default: deeplab_v3_s8)') parser.add_argument('--num_classes', type=int, default=21, help='the number of classes (Default: 21)') args = parser.parse_args() if args.model == 'deeplab_v3_s16': network = net_factory.nets_map['deeplab_v3_s16']('eval', args.num_classes, 16, True) else: network = net_factory.nets_map['deeplab_v3_s8']('eval', args.num_classes, 8, True) param_dict = load_checkpoint(args.checkpoint) # load the parameter into net load_param_into_net(network, param_dict) input_data = np.random.uniform(0.0, 1.0, size=[32, 3, 513, 513]).astype(np.float32) export(network, Tensor(input_data), file_name=args.model+'-300_11.air', file_format='AIR')