# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """export checkpoint file into air, onnx, mindir models""" import argparse import numpy as np from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export from eval import BuildEvalNetwork from src.nets import net_factory parser = argparse.ArgumentParser(description='checkpoint export') parser.add_argument("--device_id", type=int, default=0, help="Device id") parser.add_argument("--batch_size", type=int, default=1, help="batch size") parser.add_argument("--input_size", type=int, default=513, help="batch size") parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") parser.add_argument("--file_name", type=str, default="deeplabv3", help="output file name.") parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format') parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend", help="device target") parser.add_argument('--model', type=str.lower, default='deeplab_v3_s8', choices=['deeplab_v3_s16', 'deeplab_v3_s8'], help='Select model structure (Default: deeplab_v3_s8)') parser.add_argument('--num_classes', type=int, default=21, help='the number of classes (Default: 21)') args = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) if args.device_target == "Ascend": context.set_context(device_id=args.device_id) if __name__ == '__main__': if args.model == 'deeplab_v3_s16': network = net_factory.nets_map['deeplab_v3_s16']('eval', args.num_classes, 16, True) else: network = net_factory.nets_map['deeplab_v3_s8']('eval', args.num_classes, 8, True) network = BuildEvalNetwork(network) param_dict = load_checkpoint(args.ckpt_file) # load the parameter into net load_param_into_net(network, param_dict) input_data = Tensor(np.ones([args.batch_size, 3, args.input_size, args.input_size]).astype(np.float32)) export(network, input_data, file_name=args.file_name, file_format=args.file_format)