# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import numpy as np import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.api import _executor from mindspore.ops import composite as C from mindspore.ops import operations as P from tests.ut.python.ops.test_math_ops import VirtualLoss grad_all = C.GradOperation(get_all=True) class NetWithLoss(nn.Cell): def __init__(self, network): super(NetWithLoss, self).__init__() self.loss = VirtualLoss() self.network = network def construct(self, x, y, b): predict = self.network(x, y, b) return self.loss(predict) class GradWrap(nn.Cell): def __init__(self, network): super(GradWrap, self).__init__() self.network = network def construct(self, x, y, b): return grad_all(self.network)(x, y, b) def loop_config(size): config_list = [] num = 1 split_list = [num] for _ in range(int(math.log2(size))): num = num * 2 split_list.append(num) for a in split_list: for b in split_list: if a * b > size: continue c = int(size / (a * b)) config_list.append(((a, b), (b, c))) return config_list # model_parallel test def test_two_matmul(): class Net(nn.Cell): def __init__(self, strategy1, strategy2): super().__init__() self.matmul1 = P.MatMul().shard(strategy1) self.matmul2 = P.MatMul().shard(strategy2) def construct(self, x, y, b): out = self.matmul1(x, y) out = self.matmul2(out, b) return out size = 4 context.set_auto_parallel_context(device_num=size, global_rank=0) x = Tensor(np.ones([128, 32]), dtype=ms.float32) y = Tensor(np.ones([32, 64]), dtype=ms.float32) b = Tensor(np.ones([64, 64]), dtype=ms.float32) config_list = loop_config(size) count = 0 for strategy1 in config_list: for strategy2 in config_list: print("=======current config {}=========".format(count)) print(strategy1, strategy2) net = GradWrap(NetWithLoss(Net(strategy1, strategy2))) context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") net.set_auto_parallel() net.set_train() _executor.compile(net, x, y, b) count = count + 1