# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test loss """ import numpy as np import mindspore.nn as nn from mindspore import Tensor from ..ut_filter import non_graph_engine def test_L1Loss(): loss = nn.L1Loss() input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(np.float32)) target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(np.float32)) loss(input_data, target_data) def test_MSELoss(): loss = nn.MSELoss() input_data = Tensor(np.array([[1, 2, 3], [2, 3, 2]]).astype(np.float32)) target_data = Tensor(np.array([[0, 0, 5], [1, 2, 3]]).astype(np.float32)) loss(input_data, target_data) @non_graph_engine def test_SoftmaxCrossEntropyWithLogits(): """ test_SoftmaxCrossEntropyWithLogits """ loss = nn.SoftmaxCrossEntropyWithLogits() logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) loss.construct(logits, labels) def test_SoftmaxCrossEntropyWithLogits_reduce(): """ test_SoftmaxCrossEntropyWithLogits """ loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean") logits = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) labels = Tensor(np.random.randint(0, 9, [100, 10]).astype(np.float32)) loss(logits, labels) def test_BCELoss(): """ test_BCELoss """ loss = nn.BCELoss() inputs_data = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]).astype(np.float32)) target_data = Tensor(np.array([[0, 1, 0], [0, 0, 1]]).astype(np.float32)) loss(inputs_data, target_data) def test_BCELoss_reduce(): """ test_BCELoss """ loss = nn.BCELoss(reduction='mean') inputs_data = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]).astype(np.float32)) target_data = Tensor(np.array([[0, 1, 0], [0, 0, 1]]).astype(np.float32)) loss(inputs_data, target_data) def test_BCELoss_weight(): """ test_BCELoss """ weight = Tensor(np.array([[1.0, 2.0, 3.0], [2.2, 2.6, 3.9]]).astype(np.float32)) loss = nn.BCELoss(weight=weight) inputs_data = Tensor(np.array([[0.1, 0.2, 0.3], [0.5, 0.7, 0.9]]).astype(np.float32)) target_data = Tensor(np.array([[0, 1, 0], [0, 0, 1]]).astype(np.float32)) loss(inputs_data, target_data) def test_cosine_embedding_loss(): """ test CosineEmbeddingLoss """ loss = nn.CosineEmbeddingLoss() x1 = Tensor(np.array([[0.3, 0.8], [0.4, 0.3]]).astype(np.float32)) x2 = Tensor(np.array([[0.4, 1.2], [-0.4, -0.9]]).astype(np.float32)) label = Tensor(np.array([1, -1]).astype(np.int32)) loss(x1, x2, label)