# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_parser_construct """ import pytest import numpy as np from mindspore import context from mindspore.nn import Cell from mindspore.common.tensor import Tensor from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation def setup_module(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_parser_construct(): class ParentNet(Cell): def __init__(self): super().__init__() self.relu = P.ReLU() def construct(self, x): return self.relu(x) class UncleNet(Cell): def __init__(self): super(UncleNet, self).__init__() self.sigmoid = P.Sigmoid() def construct(self, x): return self.sigmoid(x) class Net(UncleNet, ParentNet): def __init__(self): super().__init__() super(UncleNet, self).__init__() def construct(self, x): return super(UncleNet, self).construct(x) input_np_x = np.ones([2, 3, 4, 5]).astype(np.float32) out_np = np.ones([2, 3, 4, 5]).astype(np.float32) input_me = Tensor(input_np_x) output_grad_me = Tensor(out_np) net = Net() out_me = net(input_me) net1 = Net() grad = GradOperation(sens_param=True) grad_op = grad(net1) grad_me = grad_op(input_me, output_grad_me) assert np.allclose(input_np_x, out_me.asnumpy(), 0.001, 0.001) assert np.allclose(input_np_x, grad_me.asnumpy(), 0.001, 0.001)