# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import mindspore.dataset as ds import mindspore.dataset.text as text import mindspore.common.dtype as mstype from mindspore import log as logger # this file contains "home is behind the world head" each word is 1 line DATA_FILE = "../data/dataset/testVocab/words.txt" VOCAB_FILE = "../data/dataset/testVocab/vocab_list.txt" SIMPLE_VOCAB_FILE = "../data/dataset/testVocab/simple_vocab_list.txt" def test_lookup_callable(): """ Test lookup is callable """ logger.info("test_lookup_callable") vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您']) lookup = text.Lookup(vocab) word = "迎" assert lookup(word) == 3 def test_from_list_tutorial(): vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["", ""], True) lookup = text.Lookup(vocab, "") data = ds.TextFileDataset(DATA_FILE, shuffle=False) data = data.map(operations=lookup, input_columns=["text"]) ind = 0 res = [2, 1, 4, 5, 6, 7] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): assert d["text"] == res[ind], ind ind += 1 def test_from_file_tutorial(): vocab = text.Vocab.from_file(VOCAB_FILE, ",", None, ["", ""], True) lookup = text.Lookup(vocab) data = ds.TextFileDataset(DATA_FILE, shuffle=False) data = data.map(operations=lookup, input_columns=["text"]) ind = 0 res = [10, 11, 12, 15, 13, 14] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): assert d["text"] == res[ind], ind ind += 1 def test_from_dict_tutorial(): vocab = text.Vocab.from_dict({"home": 3, "behind": 2, "the": 4, "world": 5, "": 6}) lookup = text.Lookup(vocab, "") # any unknown token will be mapped to the id of data = ds.TextFileDataset(DATA_FILE, shuffle=False) data = data.map(operations=lookup, input_columns=["text"]) res = [3, 6, 2, 4, 5, 6] ind = 0 for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): assert d["text"] == res[ind], ind ind += 1 def test_from_dict_exception(): try: vocab = text.Vocab.from_dict({"home": -1, "behind": 0}) if not vocab: raise ValueError("Vocab is None") except ValueError as e: assert "is not within the required interval" in str(e) def test_from_list(): def gen(texts): for word in texts.split(" "): yield (np.array(word, dtype='S'),) def test_config(lookup_str, vocab_input, special_tokens, special_first, unknown_token): try: vocab = text.Vocab.from_list(vocab_input, special_tokens, special_first) data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"]) data = data.map(operations=text.Lookup(vocab, unknown_token), input_columns=["text"]) res = [] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(d["text"].item()) return res except (ValueError, RuntimeError, TypeError) as e: return str(e) # test basic default config, special_token=None, unknown_token=None assert test_config("w1 w2 w3", ["w1", "w2", "w3"], None, True, None) == [0, 1, 2] # test normal operations assert test_config("w1 w2 w3 s1 s2 ephemeral", ["w1", "w2", "w3"], ["s1", "s2"], True, "s2") == [2, 3, 4, 0, 1, 1] assert test_config("w1 w2 w3 s1 s2", ["w1", "w2", "w3"], ["s1", "s2"], False, "s2") == [0, 1, 2, 3, 4] assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, True, "w1") == [2, 1, 0] assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, False, "w1") == [2, 1, 0] # test unknown token lookup assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["", ""], True, "") == [2, 1, 4, 1] assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["", ""], False, "") == [0, 4, 2, 4] # test exceptions assert "doesn't exist in vocab." in test_config("un1", ["w1"], [], False, "unk") assert "doesn't exist in vocab and no unknown token is specified." in test_config("un1", ["w1"], [], False, None) assert "doesn't exist in vocab" in test_config("un1", ["w1"], [], False, None) assert "word_list contains duplicate" in test_config("w1", ["w1", "w1"], [], True, "w1") assert "special_tokens contains duplicate" in test_config("w1", ["w1", "w2"], ["s1", "s1"], True, "w1") assert "special_tokens and word_list contain duplicate" in test_config("w1", ["w1", "w2"], ["s1", "w1"], True, "w1") assert "is not of type" in test_config("w1", ["w1", "w2"], ["s1"], True, 123) def test_from_list_lookup_empty_string(): # "" is a valid word in vocab, which can be looked up by LookupOp vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["", ""], True) lookup = text.Lookup(vocab, "") data = ds.TextFileDataset(DATA_FILE, shuffle=False) data = data.map(operations=lookup, input_columns=["text"]) ind = 0 res = [2, 1, 4, 5, 6, 7] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): assert d["text"] == res[ind], ind ind += 1 # unknown_token of LookUp is None, it will convert to std::nullopt in C++, # so it has nothing to do with "" in vocab and C++ will skip looking up unknown_token vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["", ""], True) lookup = text.Lookup(vocab) data = ds.TextFileDataset(DATA_FILE, shuffle=False) data = data.map(operations=lookup, input_columns=["text"]) try: for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True): pass except RuntimeError as e: assert "token: \"is\" doesn't exist in vocab and no unknown token is specified" in str(e) def test_from_file(): def gen(texts): for word in texts.split(" "): yield (np.array(word, dtype='S'),) def test_config(lookup_str, vocab_size, special_tokens, special_first): try: vocab = text.Vocab.from_file(SIMPLE_VOCAB_FILE, vocab_size=vocab_size, special_tokens=special_tokens, special_first=special_first) data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"]) data = data.map(operations=text.Lookup(vocab, "s2"), input_columns=["text"]) res = [] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(d["text"].item()) return res except ValueError as e: return str(e) # test special tokens are prepended assert test_config("w1 w2 w3 s1 s2 s3", None, ["s1", "s2", "s3"], True) == [3, 4, 5, 0, 1, 2] # test special tokens are appended assert test_config("w1 w2 w3 s1 s2 s3", None, ["s1", "s2", "s3"], False) == [0, 1, 2, 8, 9, 10] # test special tokens are prepended when not all words in file are used assert test_config("w1 w2 w3 s1 s2 s3", 3, ["s1", "s2", "s3"], False) == [0, 1, 2, 3, 4, 5] # text exception special_words contains duplicate words assert "special_tokens contains duplicate" in test_config("w1", None, ["s1", "s1"], True) # test exception when vocab_size is negative assert "Input vocab_size must be greater than 0" in test_config("w1 w2", 0, [], True) assert "Input vocab_size must be greater than 0" in test_config("w1 w2", -1, [], True) def test_lookup_cast_type(): def gen(texts): for word in texts.split(" "): yield (np.array(word, dtype='S'),) def test_config(lookup_str, data_type=None): try: vocab = text.Vocab.from_list(["w1", "w2", "w3"], special_tokens=[""], special_first=True) data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"]) # if data_type is None, test the default value of data_type op = text.Lookup(vocab, "") if data_type is None else text.Lookup(vocab, "", data_type) data = data.map(operations=op, input_columns=["text"]) res = [] for d in data.create_dict_iterator(num_epochs=1, output_numpy=True): res.append(d["text"]) return res[0].dtype except (ValueError, RuntimeError, TypeError) as e: return str(e) # test result is correct assert test_config("w1", mstype.int8) == np.dtype("int8") assert test_config("w2", mstype.int32) == np.dtype("int32") assert test_config("w3", mstype.int64) == np.dtype("int64") assert test_config("unk", mstype.float32) != np.dtype("int32") assert test_config("unk") == np.dtype("int32") # test exception, data_type isn't the correct type assert "tldr is not of type (,)" in test_config("unk", "tldr") assert "Lookup does not support a string to string mapping, data_type can only be numeric." in \ test_config("w1", mstype.string) if __name__ == '__main__': test_lookup_callable() test_from_dict_exception() test_from_list_tutorial() test_from_file_tutorial() test_from_dict_tutorial() test_from_list() test_from_file() test_lookup_cast_type()