# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.cauchy. """ import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor def test_cauchy_shape_errpr(): """ Invalid shapes. """ with pytest.raises(ValueError): msd.Cauchy([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) def test_type(): with pytest.raises(TypeError): msd.Cauchy(0., 1., dtype=dtype.int32) def test_name(): with pytest.raises(TypeError): msd.Cauchy(0., 1., name=1.0) def test_seed(): with pytest.raises(TypeError): msd.Cauchy(0., 1., seed='seed') def test_scale(): with pytest.raises(ValueError): msd.Cauchy(0., 0.) with pytest.raises(ValueError): msd.Cauchy(0., -1.) def test_arguments(): """ args passing during initialization. """ l = msd.Cauchy() assert isinstance(l, msd.Distribution) l = msd.Cauchy([3.0], [4.0], dtype=dtype.float32) assert isinstance(l, msd.Distribution) class CauchyProb(nn.Cell): """ Cauchy distribution: initialize with loc/scale. """ def __init__(self): super(CauchyProb, self).__init__() self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32) def construct(self, value): prob = self.cauchy.prob(value) log_prob = self.cauchy.log_prob(value) cdf = self.cauchy.cdf(value) log_cdf = self.cauchy.log_cdf(value) sf = self.cauchy.survival_function(value) log_sf = self.cauchy.log_survival(value) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_cauchy_prob(): """ Test probability functions: passing value through construct. """ net = CauchyProb() value = Tensor([0.5, 1.0], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class CauchyProb1(nn.Cell): """ Cauchy distribution: initialize without loc/scale. """ def __init__(self): super(CauchyProb1, self).__init__() self.cauchy = msd.Cauchy() def construct(self, value, mu, s): prob = self.cauchy.prob(value, mu, s) log_prob = self.cauchy.log_prob(value, mu, s) cdf = self.cauchy.cdf(value, mu, s) log_cdf = self.cauchy.log_cdf(value, mu, s) sf = self.cauchy.survival_function(value, mu, s) log_sf = self.cauchy.log_survival(value, mu, s) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_cauchy_prob1(): """ Test probability functions: passing loc/scale, value through construct. """ net = CauchyProb1() value = Tensor([0.5, 1.0], dtype=dtype.float32) mu = Tensor([0.0], dtype=dtype.float32) s = Tensor([1.0], dtype=dtype.float32) ans = net(value, mu, s) assert isinstance(ans, Tensor) class KL(nn.Cell): """ Test kl_loss and cross entropy. """ def __init__(self): super(KL, self).__init__() self.cauchy = msd.Cauchy(3.0, 4.0) self.cauchy1 = msd.Cauchy() def construct(self, mu, s, mu_a, s_a): kl = self.cauchy.kl_loss('Cauchy', mu, s) kl1 = self.cauchy1.kl_loss('Cauchy', mu, s, mu_a, s_a) cross_entropy = self.cauchy.cross_entropy('Cauchy', mu, s) cross_entropy1 = self.cauchy.cross_entropy('Cauchy', mu, s, mu_a, s_a) return kl + kl1 + cross_entropy + cross_entropy1 def test_kl_cross_entropy(): """ Test kl_loss and cross_entropy. """ net = KL() mu = Tensor([0.0], dtype=dtype.float32) s = Tensor([1.0], dtype=dtype.float32) mu_a = Tensor([0.0], dtype=dtype.float32) s_a = Tensor([1.0], dtype=dtype.float32) ans = net(mu, s, mu_a, s_a) assert isinstance(ans, Tensor) class CauchyBasics(nn.Cell): """ Test class: basic loc/scale function. """ def __init__(self): super(CauchyBasics, self).__init__() self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32) def construct(self): mode = self.cauchy.mode() entropy = self.cauchy.entropy() return mode + entropy class CauchyMean(nn.Cell): """ Test class: basic loc/scale function. """ def __init__(self): super(CauchyMean, self).__init__() self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32) def construct(self): return self.cauchy.mean() class CauchyVar(nn.Cell): """ Test class: basic loc/scale function. """ def __init__(self): super(CauchyVar, self).__init__() self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32) def construct(self): return self.cauchy.var() class CauchySd(nn.Cell): """ Test class: basic loc/scale function. """ def __init__(self): super(CauchySd, self).__init__() self.cauchy = msd.Cauchy(3.0, 4.0, dtype=dtype.float32) def construct(self): return self.cauchy.sd() def test_bascis(): """ Test mean/sd/var/mode/entropy functionality of Cauchy. """ net = CauchyBasics() ans = net() assert isinstance(ans, Tensor) with pytest.raises(ValueError): net = CauchyMean() ans = net() with pytest.raises(ValueError): net = CauchyVar() ans = net() with pytest.raises(ValueError): net = CauchySd() ans = net() class CauchyConstruct(nn.Cell): """ Cauchy distribution: going through construct. """ def __init__(self): super(CauchyConstruct, self).__init__() self.cauchy = msd.Cauchy(3.0, 4.0) self.cauchy1 = msd.Cauchy() def construct(self, value, mu, s): prob = self.cauchy('prob', value) prob1 = self.cauchy('prob', value, mu, s) prob2 = self.cauchy1('prob', value, mu, s) return prob + prob1 + prob2 def test_cauchy_construct(): """ Test probability function going through construct. """ net = CauchyConstruct() value = Tensor([0.5, 1.0], dtype=dtype.float32) mu = Tensor([0.0], dtype=dtype.float32) s = Tensor([1.0], dtype=dtype.float32) ans = net(value, mu, s) assert isinstance(ans, Tensor)