# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.logistic. """ import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor def test_logistic_shape_errpr(): """ Invalid shapes. """ with pytest.raises(ValueError): msd.Logistic([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) def test_type(): with pytest.raises(TypeError): msd.Logistic(0., 1., dtype=dtype.int32) def test_name(): with pytest.raises(TypeError): msd.Logistic(0., 1., name=1.0) def test_seed(): with pytest.raises(TypeError): msd.Logistic(0., 1., seed='seed') def test_scale(): with pytest.raises(ValueError): msd.Logistic(0., 0.) with pytest.raises(ValueError): msd.Logistic(0., -1.) def test_arguments(): """ args passing during initialization. """ l = msd.Logistic() assert isinstance(l, msd.Distribution) l = msd.Logistic([3.0], [4.0], dtype=dtype.float32) assert isinstance(l, msd.Distribution) class LogisticProb(nn.Cell): """ logistic distribution: initialize with loc/scale. """ def __init__(self): super(LogisticProb, self).__init__() self.logistic = msd.Logistic(3.0, 4.0, dtype=dtype.float32) def construct(self, value): prob = self.logistic.prob(value) log_prob = self.logistic.log_prob(value) cdf = self.logistic.cdf(value) log_cdf = self.logistic.log_cdf(value) sf = self.logistic.survival_function(value) log_sf = self.logistic.log_survival(value) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_logistic_prob(): """ Test probability functions: passing value through construct. """ net = LogisticProb() value = Tensor([0.5, 1.0], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class LogisticProb1(nn.Cell): """ logistic distribution: initialize without loc/scale. """ def __init__(self): super(LogisticProb1, self).__init__() self.logistic = msd.Logistic() def construct(self, value, mu, s): prob = self.logistic.prob(value, mu, s) log_prob = self.logistic.log_prob(value, mu, s) cdf = self.logistic.cdf(value, mu, s) log_cdf = self.logistic.log_cdf(value, mu, s) sf = self.logistic.survival_function(value, mu, s) log_sf = self.logistic.log_survival(value, mu, s) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_logistic_prob1(): """ Test probability functions: passing loc/scale, value through construct. """ net = LogisticProb1() value = Tensor([0.5, 1.0], dtype=dtype.float32) mu = Tensor([0.0], dtype=dtype.float32) s = Tensor([1.0], dtype=dtype.float32) ans = net(value, mu, s) assert isinstance(ans, Tensor) class KL(nn.Cell): """ Test kl_loss. Should raise NotImplementedError. """ def __init__(self): super(KL, self).__init__() self.logistic = msd.Logistic(3.0, 4.0) def construct(self, mu, s): kl = self.logistic.kl_loss('Logistic', mu, s) return kl class Crossentropy(nn.Cell): """ Test cross entropy. Should raise NotImplementedError. """ def __init__(self): super(Crossentropy, self).__init__() self.logistic = msd.Logistic(3.0, 4.0) def construct(self, mu, s): cross_entropy = self.logistic.cross_entropy('Logistic', mu, s) return cross_entropy class LogisticBasics(nn.Cell): """ Test class: basic loc/scale function. """ def __init__(self): super(LogisticBasics, self).__init__() self.logistic = msd.Logistic(3.0, 4.0, dtype=dtype.float32) def construct(self): mean = self.logistic.mean() sd = self.logistic.sd() mode = self.logistic.mode() entropy = self.logistic.entropy() return mean + sd + mode + entropy def test_bascis(): """ Test mean/sd/mode/entropy functionality of logistic. """ net = LogisticBasics() ans = net() assert isinstance(ans, Tensor) mu = Tensor(1.0, dtype=dtype.float32) s = Tensor(1.0, dtype=dtype.float32) with pytest.raises(NotImplementedError): kl = KL() ans = kl(mu, s) with pytest.raises(NotImplementedError): crossentropy = Crossentropy() ans = crossentropy(mu, s) class LogisticConstruct(nn.Cell): """ logistic distribution: going through construct. """ def __init__(self): super(LogisticConstruct, self).__init__() self.logistic = msd.Logistic(3.0, 4.0) self.logistic1 = msd.Logistic() def construct(self, value, mu, s): prob = self.logistic('prob', value) prob1 = self.logistic('prob', value, mu, s) prob2 = self.logistic1('prob', value, mu, s) return prob + prob1 + prob2 def test_logistic_construct(): """ Test probability function going through construct. """ net = LogisticConstruct() value = Tensor([0.5, 1.0], dtype=dtype.float32) mu = Tensor([0.0], dtype=dtype.float32) s = Tensor([1.0], dtype=dtype.float32) ans = net(value, mu, s) assert isinstance(ans, Tensor)