# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.Poisson. """ import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor def test_arguments(): """ Args passing during initialization. """ p = msd.Poisson() assert isinstance(p, msd.Distribution) p = msd.Poisson([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32) assert isinstance(p, msd.Distribution) def test_type(): with pytest.raises(TypeError): msd.Poisson([0.1], dtype=dtype.bool_) def test_name(): with pytest.raises(TypeError): msd.Poisson([0.1], name=1.0) def test_seed(): with pytest.raises(TypeError): msd.Poisson([0.1], seed='seed') def test_rate(): """ Invalid rate. """ with pytest.raises(ValueError): msd.Poisson([-0.1], dtype=dtype.float32) with pytest.raises(ValueError): msd.Poisson([0.0], dtype=dtype.float32) def test_scalar(): with pytest.raises(TypeError): msd.Poisson(0.1, seed='seed') class PoissonProb(nn.Cell): """ Poisson distribution: initialize with rate. """ def __init__(self): super(PoissonProb, self).__init__() self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32) def construct(self, value): prob = self.p.prob(value) log_prob = self.p.log_prob(value) cdf = self.p.cdf(value) log_cdf = self.p.log_cdf(value) sf = self.p.survival_function(value) log_sf = self.p.log_survival(value) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_poisson_prob(): """ Test probability functions: passing value through construct. """ net = PoissonProb() value = Tensor([0.2, 0.3, 5.0, 2, 3.9], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class PoissonProb1(nn.Cell): """ Poisson distribution: initialize without rate. """ def __init__(self): super(PoissonProb1, self).__init__() self.p = msd.Poisson(dtype=dtype.float32) def construct(self, value, rate): prob = self.p.prob(value, rate) log_prob = self.p.log_prob(value, rate) cdf = self.p.cdf(value, rate) log_cdf = self.p.log_cdf(value, rate) sf = self.p.survival_function(value, rate) log_sf = self.p.log_survival(value, rate) return prob + log_prob + cdf + log_cdf + sf + log_sf def test_poisson_prob1(): """ Test probability functions: passing value/rate through construct. """ net = PoissonProb1() value = Tensor([0.2, 0.9, 1, 2, 3], dtype=dtype.float32) rate = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32) ans = net(value, rate) assert isinstance(ans, Tensor) class PoissonBasics(nn.Cell): """ Test class: basic mean/sd/var/mode function. """ def __init__(self): super(PoissonBasics, self).__init__() self.p = msd.Poisson([2.3, 2.5], dtype=dtype.float32) def construct(self): mean = self.p.mean() sd = self.p.sd() var = self.p.var() return mean + sd + var def test_bascis(): """ Test mean/sd/var/mode functionality of Poisson distribution. """ net = PoissonBasics() ans = net() assert isinstance(ans, Tensor) class PoissonConstruct(nn.Cell): """ Poisson distribution: going through construct. """ def __init__(self): super(PoissonConstruct, self).__init__() self.p = msd.Poisson([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32) self.p1 = msd.Poisson(dtype=dtype.float32) def construct(self, value, rate): prob = self.p('prob', value) prob1 = self.p('prob', value, rate) prob2 = self.p1('prob', value, rate) return prob + prob1 + prob2 def test_poisson_construct(): """ Test probability function going through construct. """ net = PoissonConstruct() value = Tensor([0, 0, 0, 0, 0], dtype=dtype.float32) probs = Tensor([0.5, 0.5, 0.5, 0.5, 0.5], dtype=dtype.float32) ans = net(value, probs) assert isinstance(ans, Tensor)