# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """evaluate imagenet""" import argparse import mindspore.nn as nn from mindspore import context from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import nasnet_a_mobile_config_gpu as cfg from src.dataset import create_dataset from src.nasnet_a_mobile import NASNetAMobile from src.loss import CrossEntropy_Val if __name__ == '__main__': parser = argparse.ArgumentParser(description='image classification evaluation') parser.add_argument('--checkpoint', type=str, default='', help='checkpoint of nasnet_a_mobile (Default: None)') parser.add_argument('--dataset_path', type=str, default='', help='Dataset path') parser.add_argument('--platform', type=str, default='GPU', choices=('Ascend', 'GPU'), help='run platform') args_opt = parser.parse_args() if args_opt.platform != 'GPU': raise ValueError("Only supported GPU training.") context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.platform) net = NASNetAMobile(num_classes=cfg.num_classes, is_training=False) ckpt = load_checkpoint(args_opt.checkpoint) load_param_into_net(net, ckpt) net.set_train(False) dataset = create_dataset(args_opt.dataset_path, cfg, False) loss = CrossEntropy_Val(smooth_factor=0.1, num_classes=cfg.num_classes) eval_metrics = {'Loss': nn.Loss(), 'Top1-Acc': nn.Top1CategoricalAccuracy(), 'Top5-Acc': nn.Top5CategoricalAccuracy()} model = Model(net, loss, optimizer=None, metrics=eval_metrics) metrics = model.eval(dataset) print("metric: ", metrics)