# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class OpNetWrapper(nn.Cell): def __init__(self, op): super(OpNetWrapper, self).__init__() self.op = op def construct(self, *inputs): return self.op(*inputs) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out1_axis0(): op = P.Split(0, 1) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6))) outputs = op_wrapper(input_x) print(outputs) assert outputs[0].shape == (2, 2, 6) assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2, 3, 4, 5]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out2_axis2(): op = P.Split(2, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(24).astype(np.int32).reshape((2, 2, 6))) outputs = op_wrapper(input_x) print(outputs) assert outputs[0].shape == (2, 2, 3) assert outputs[1].shape == (2, 2, 3) assert np.allclose(outputs[0].asnumpy()[0, 0, :], [0, 1, 2]) assert np.allclose(outputs[1].asnumpy()[0, 0, :], [3, 4, 5]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out2_axis1neg(): op = P.Split(-1, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(24).astype(np.float32).reshape((2, 2, 6))) outputs = op_wrapper(input_x) print(outputs) assert np.allclose(outputs[0].asnumpy()[0, :, :], [[0., 1., 2.], [6., 7., 8.]]) assert np.allclose(outputs[1].asnumpy()[0, :, :], [[3., 4., 5.], [9., 10., 11.]]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out_float32(): op = P.Split(5, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(192).astype(np.float32).reshape((2, 2, 2, 2, 2, 6))) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.]) op = P.Split(5, 3) op_wrapper = OpNetWrapper(op) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.]) assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out_float64(): op = P.Split(5, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(192).astype(np.float64).reshape((2, 2, 2, 2, 2, 6))) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.]) op = P.Split(5, 3) op_wrapper = OpNetWrapper(op) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.]) assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out_float16(): op = P.Split(-1, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(320).astype(np.float16).reshape((2, 2, 2, 2, 2, 10))) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2., 3., 4.]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5., 6., 7., 8., 9.]) op = P.Split(-1, 5) op_wrapper = OpNetWrapper(op) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.]) assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.]) assert np.allclose(outputs[3].asnumpy()[0, 0, 0, 0, 0, :], [6., 7.]) assert np.allclose(outputs[4].asnumpy()[0, 0, 0, 0, 0, :], [8., 9.]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out_int32(): op = P.Split(5, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(192).astype(np.int32).reshape((2, 2, 2, 2, 2, 6))) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5]) op = P.Split(5, 3) op_wrapper = OpNetWrapper(op) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97]) assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99]) assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out_int64(): op = P.Split(5, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(192).astype(np.int64).reshape((2, 2, 2, 2, 2, 6))) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5]) op = P.Split(5, 3) op_wrapper = OpNetWrapper(op) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97]) assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99]) assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101]) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_out_uint32(): op = P.Split(-1, 2) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(320).astype(np.uint32).reshape((2, 2, 2, 2, 2, 10))) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2, 3, 4]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5, 6, 7, 8, 9]) op = P.Split(-1, 5) op_wrapper = OpNetWrapper(op) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, 1, :], [310, 311]) assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, 1, :], [312, 313]) assert np.allclose(outputs[2].asnumpy()[1, 1, 1, 1, 1, :], [314, 315]) assert np.allclose(outputs[3].asnumpy()[1, 1, 1, 1, 1, :], [316, 317]) assert np.allclose(outputs[4].asnumpy()[1, 1, 1, 1, 1, :], [318, 319]) op = P.Split(-2, 2) op_wrapper = OpNetWrapper(op) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, :, 0], [0]) assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, :, 1], [11]) assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, :, 2], [162]) assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, :, 3], [173]) assert np.allclose(outputs[0].asnumpy()[1, 1, 0, 0, :, 4], [244]) assert np.allclose(outputs[1].asnumpy()[1, 1, 0, 0, :, 5], [255]) assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 0, :, 6], [286]) assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 0, :, 7], [297]) assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, :, 8], [308]) assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, :, 9], [319]) op = P.Split(-1, 1) op_wrapper = OpNetWrapper(op) input_x = Tensor(np.arange(1).astype(np.uint32)) outputs = op_wrapper(input_x) assert np.allclose(outputs[0].asnumpy(), [0]) if __name__ == '__main__': test_out1_axis0() test_out2_axis2() test_out2_axis1neg()