# Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.sub = P.Sub() def construct(self, x, y): return self.sub(x, y) class NetDynamic(nn.Cell): def __init__(self): super(NetDynamic, self).__init__() self.d = inner.GpuConvertToDynamicShape() self.sub = P.Sub() def construct(self, x, y): x = self.d(x) y = self.d(y) out = self.sub(x, y) return out def sub(nptype): np_x0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) np_y0 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) np_x1 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) np_y1 = np.random.uniform(-2, 2, (2, 1, 4, 4)).astype(nptype) np_x2 = np.random.uniform(-2, 2, (2, 1, 1, 4)).astype(nptype) np_y2 = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(nptype) np_x3 = np.random.uniform(-2, 2, 1).astype(nptype) np_y3 = np.random.uniform(-2, 2, 1).astype(nptype) np_x4 = np.array(768).astype(nptype) np_y4 = np.array(3072.5).astype(nptype) x0 = Tensor(np_x0) y0 = Tensor(np_y0) x1 = Tensor(np_x1) y1 = Tensor(np_y1) x2 = Tensor(np_x2) y2 = Tensor(np_y2) x3 = Tensor(np_x3) y3 = Tensor(np_y3) x4 = Tensor(np_x4) y4 = Tensor(np_y4) expect0 = np.subtract(np_x0, np_y0) error0 = np.ones(shape=expect0.shape) * 1.0e-5 expect1 = np.subtract(np_x1, np_y1) error1 = np.ones(shape=expect1.shape) * 1.0e-5 expect2 = np.subtract(np_x2, np_y2) error2 = np.ones(shape=expect2.shape) * 1.0e-5 expect3 = np.subtract(np_x3, np_y3) error3 = np.ones(shape=expect3.shape) * 1.0e-5 expect4 = np.subtract(np_x4, np_y4) error4 = np.ones(shape=expect4.shape) * 1.0e-5 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") sub_net = Net() output0 = sub_net(x0, y0) output1 = sub_net(x1, y1) output2 = sub_net(x2, y2) output3 = sub_net(x3, y3) output4 = sub_net(x4, y4) diff0 = output0.asnumpy() - expect0 assert np.all(diff0 < error0) assert output0.shape == expect0.shape diff1 = output1.asnumpy() - expect1 assert np.all(diff1 < error1) assert output1.shape == expect1.shape diff2 = output2.asnumpy() - expect2 assert np.all(diff2 < error2) assert output2.shape == expect2.shape diff3 = output3.asnumpy() - expect3 assert np.all(diff3 < error3) assert output3.shape == expect3.shape diff4 = output4.asnumpy() - expect4 assert np.all(diff4 < error4) assert output4.shape == expect4.shape context.set_context(mode=context.GRAPH_MODE, device_target="GPU") sub_net = Net() output0 = sub_net(x0, y0) output1 = sub_net(x1, y1) output2 = sub_net(x2, y2) output3 = sub_net(x3, y3) output4 = sub_net(x4, y4) diff0 = output0.asnumpy() - expect0 assert np.all(diff0 < error0) assert output0.shape == expect0.shape diff1 = output1.asnumpy() - expect1 assert np.all(diff1 < error1) assert output1.shape == expect1.shape diff2 = output2.asnumpy() - expect2 assert np.all(diff2 < error2) assert output2.shape == expect2.shape diff3 = output3.asnumpy() - expect3 assert np.all(diff3 < error3) assert output3.shape == expect3.shape diff4 = output4.asnumpy() - expect4 assert np.all(diff4 < error4) assert output4.shape == expect4.shape #dynamic shape context.set_context(mode=context.GRAPH_MODE, device_target="GPU") d_sub_net = NetDynamic() output3 = d_sub_net(x3, y3) output0 = d_sub_net(x0, y0) diff3 = output3.asnumpy() - expect3 assert np.all(diff3 < error3) assert output3.shape == expect3.shape diff0 = output0.asnumpy() - expect0 assert np.all(diff0 < error0) assert output0.shape == expect0.shape @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sub_float64(): sub(np.float64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sub_float32(): sub(np.float32) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sub_float16(): sub(np.float16) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sub_int64(): sub(np.int64) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sub_int32(): sub(np.int32)