/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "common/common.h" #include "gtest/gtest.h" #include "minddata/dataset/util/status.h" #include "minddata/dataset/engine/gnn/node.h" #include "minddata/dataset/engine/gnn/graph_data_impl.h" #include "minddata/dataset/engine/gnn/graph_loader.h" using namespace mindspore::dataset; using namespace mindspore::dataset::gnn; #define print_int_vec(_i, _str) \ do { \ std::stringstream ss; \ std::copy(_i.begin(), _i.end(), std::ostream_iterator(ss, " ")); \ MS_LOG(INFO) << _str << " " << ss.str(); \ } while (false) class MindDataTestGNNGraph : public UT::Common { protected: MindDataTestGNNGraph() = default; using NumNeighborsMap = std::map; using NodeNeighborsMap = std::map; void ParsingNeighbors(const std::shared_ptr &neighbors, NodeNeighborsMap &node_neighbors) { auto shape_vec = neighbors->shape().AsVector(); uint32_t num_members = 1; for (size_t i = 1; i < shape_vec.size(); ++i) { num_members *= shape_vec[i]; } uint32_t index = 0; NodeIdType src_node = 0; for (auto node_itr = neighbors->begin(); node_itr != neighbors->end(); ++node_itr, ++index) { if (index % num_members == 0) { src_node = *node_itr; continue; } auto src_node_itr = node_neighbors.find(src_node); if (src_node_itr == node_neighbors.end()) { node_neighbors[src_node] = {{*node_itr, 1}}; } else { auto nei_itr = src_node_itr->second.find(*node_itr); if (nei_itr == src_node_itr->second.end()) { src_node_itr->second[*node_itr] = 1; } else { src_node_itr->second[*node_itr] += 1; } } } } void CheckNeighborsRatio(const NumNeighborsMap &number_neighbors, const std::vector &weights, float deviation_ratio = 0.1) { EXPECT_EQ(number_neighbors.size(), weights.size()); int index = 0; uint32_t pre_num = 0; WeightType pre_weight = 1; for (auto neighbor : number_neighbors) { if (pre_num != 0) { float target_ratio = static_cast(pre_weight) / static_cast(weights[index]); float current_ratio = static_cast(pre_num) / static_cast(neighbor.second); float target_upper = target_ratio * (1 + deviation_ratio); float target_lower = target_ratio * (1 - deviation_ratio); MS_LOG(INFO) << "current_ratio:" << std::to_string(current_ratio) << " target_upper:" << std::to_string(target_upper) << " target_lower:" << std::to_string(target_lower); EXPECT_LE(current_ratio, target_upper); EXPECT_GE(current_ratio, target_lower); } pre_num = neighbor.second; pre_weight = weights[index]; ++index; } } }; TEST_F(MindDataTestGNNGraph, TestGetAllNeighbors) { std::string path = "data/mindrecord/testGraphData/testdata"; GraphDataImpl graph(path, 1); Status s = graph.Init(); EXPECT_TRUE(s.IsOk()); MetaInfo meta_info; s = graph.GetMetaInfo(&meta_info); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(meta_info.node_type.size() == 2); std::shared_ptr nodes; s = graph.GetAllNodes(meta_info.node_type[0], &nodes); EXPECT_TRUE(s.IsOk()); std::vector node_list; for (auto itr = nodes->begin(); itr != nodes->end(); ++itr) { node_list.push_back(*itr); if (node_list.size() >= 10) { break; } } std::shared_ptr neighbors; s = graph.GetAllNeighbors(node_list, meta_info.node_type[1], &neighbors); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(neighbors->shape().ToString() == "<10,6>"); TensorRow features; s = graph.GetNodeFeature(nodes, meta_info.node_feature_type, &features); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(features.size() == 4); EXPECT_TRUE(features[0]->shape().ToString() == "<10,5>"); EXPECT_TRUE(features[0]->ToString() == "Tensor (shape: <10,5>, Type: int32)\n" "[[0,1,0,0,0],[1,0,0,0,1],[0,0,1,1,0],[0,0,0,0,0],[1,1,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,1],[0,1,1," "0,0],[0,1,0,1,0]]"); EXPECT_TRUE(features[1]->shape().ToString() == "<10>"); EXPECT_TRUE(features[1]->ToString() == "Tensor (shape: <10>, Type: float32)\n[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]"); EXPECT_TRUE(features[2]->shape().ToString() == "<10>"); EXPECT_TRUE(features[2]->ToString() == "Tensor (shape: <10>, Type: int32)\n[1,2,3,1,4,3,5,3,5,4]"); } TEST_F(MindDataTestGNNGraph, TestGetSampledNeighbors) { std::string path = "data/mindrecord/testGraphData/testdata"; GraphDataImpl graph(path, 1); Status s = graph.Init(); EXPECT_TRUE(s.IsOk()); MetaInfo meta_info; s = graph.GetMetaInfo(&meta_info); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(meta_info.node_type.size() == 2); std::shared_ptr edges; s = graph.GetAllEdges(meta_info.edge_type[0], &edges); EXPECT_TRUE(s.IsOk()); std::vector edge_list; edge_list.resize(edges->Size()); std::transform(edges->begin(), edges->end(), edge_list.begin(), [](const EdgeIdType edge) { return edge; }); TensorRow edge_features; s = graph.GetEdgeFeature(edges, meta_info.edge_feature_type, &edge_features); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(edge_features[0]->ToString() == "Tensor (shape: <40>, Type: int32)\n" "[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0]"); EXPECT_TRUE(edge_features[1]->ToString() == "Tensor (shape: <40>, Type: float32)\n" "[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2." "7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4]"); std::shared_ptr nodes; s = graph.GetNodesFromEdges(edge_list, &nodes); EXPECT_TRUE(s.IsOk()); std::unordered_set node_set; std::vector node_list; int index = 0; for (auto itr = nodes->begin(); itr != nodes->end(); ++itr) { index++; if (index % 2 == 0) { continue; } node_set.emplace(*itr); if (node_set.size() >= 5) { break; } } node_list.resize(node_set.size()); std::transform(node_set.begin(), node_set.end(), node_list.begin(), [](const NodeIdType node) { return node; }); std::shared_ptr neighbors; { MS_LOG(INFO) << "Test random sampling."; NodeNeighborsMap number_neighbors; int count = 0; while (count < 1000) { neighbors.reset(); s = graph.GetSampledNeighbors(node_list, {10}, {meta_info.node_type[1]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(neighbors->shape().ToString() == "<5,11>"); ParsingNeighbors(neighbors, number_neighbors); ++count; } CheckNeighborsRatio(number_neighbors[103], {1, 1, 1, 1, 1}); } { MS_LOG(INFO) << "Test edge weight sampling."; NodeNeighborsMap number_neighbors; int count = 0; while (count < 1000) { neighbors.reset(); s = graph.GetSampledNeighbors(node_list, {10}, {meta_info.node_type[1]}, SamplingStrategy::kEdgeWeight, &neighbors); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(neighbors->shape().ToString() == "<5,11>"); ParsingNeighbors(neighbors, number_neighbors); ++count; } CheckNeighborsRatio(number_neighbors[103], {3, 5, 6, 7, 8}); } neighbors.reset(); s = graph.GetSampledNeighbors(node_list, {2, 3}, {meta_info.node_type[1], meta_info.node_type[0]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(neighbors->shape().ToString() == "<5,9>"); neighbors.reset(); s = graph.GetSampledNeighbors(node_list, {2, 3, 4}, {meta_info.node_type[1], meta_info.node_type[0], meta_info.node_type[1]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(neighbors->shape().ToString() == "<5,33>"); neighbors.reset(); s = graph.GetSampledNeighbors({}, {10}, {meta_info.node_type[1]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.ToString().find("Input node_list is empty.") != std::string::npos); neighbors.reset(); s = graph.GetSampledNeighbors({-1, 1}, {10}, {meta_info.node_type[1]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.ToString().find("Invalid node id") != std::string::npos); neighbors.reset(); s = graph.GetSampledNeighbors(node_list, {2, 50}, {meta_info.node_type[0], meta_info.node_type[1]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.ToString().find("Wrong samples number") != std::string::npos); neighbors.reset(); s = graph.GetSampledNeighbors(node_list, {2}, {5}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.ToString().find("Invalid neighbor type") != std::string::npos); neighbors.reset(); s = graph.GetSampledNeighbors(node_list, {2, 3, 4}, {meta_info.node_type[1], meta_info.node_type[0]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.ToString().find("The sizes of neighbor_nums and neighbor_types are inconsistent.") != std::string::npos); neighbors.reset(); s = graph.GetSampledNeighbors({301}, {10}, {meta_info.node_type[1]}, SamplingStrategy::kRandom, &neighbors); EXPECT_TRUE(s.ToString().find("Invalid node id:301") != std::string::npos); } TEST_F(MindDataTestGNNGraph, TestGetNegSampledNeighbors) { std::string path = "data/mindrecord/testGraphData/testdata"; GraphDataImpl graph(path, 1); Status s = graph.Init(); EXPECT_TRUE(s.IsOk()); MetaInfo meta_info; s = graph.GetMetaInfo(&meta_info); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(meta_info.node_type.size() == 2); std::shared_ptr nodes; s = graph.GetAllNodes(meta_info.node_type[0], &nodes); EXPECT_TRUE(s.IsOk()); std::vector node_list; for (auto itr = nodes->begin(); itr != nodes->end(); ++itr) { node_list.push_back(*itr); if (node_list.size() >= 10) { break; } } std::shared_ptr neg_neighbors; s = graph.GetNegSampledNeighbors(node_list, 3, meta_info.node_type[1], &neg_neighbors); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(neg_neighbors->shape().ToString() == "<10,4>"); neg_neighbors.reset(); s = graph.GetNegSampledNeighbors({}, 3, meta_info.node_type[1], &neg_neighbors); EXPECT_TRUE(s.ToString().find("Input node_list is empty.") != std::string::npos); neg_neighbors.reset(); s = graph.GetNegSampledNeighbors({-1, 1}, 3, meta_info.node_type[1], &neg_neighbors); EXPECT_TRUE(s.ToString().find("Invalid node id") != std::string::npos); neg_neighbors.reset(); s = graph.GetNegSampledNeighbors(node_list, 50, meta_info.node_type[1], &neg_neighbors); EXPECT_TRUE(s.ToString().find("Wrong samples number") != std::string::npos); neg_neighbors.reset(); s = graph.GetNegSampledNeighbors(node_list, 3, 3, &neg_neighbors); EXPECT_TRUE(s.ToString().find("Invalid neighbor type") != std::string::npos); } TEST_F(MindDataTestGNNGraph, TestRandomWalk) { std::string path = "data/mindrecord/testGraphData/sns"; GraphDataImpl graph(path, 1); Status s = graph.Init(); EXPECT_TRUE(s.IsOk()); MetaInfo meta_info; s = graph.GetMetaInfo(&meta_info); EXPECT_TRUE(s.IsOk()); std::shared_ptr nodes; s = graph.GetAllNodes(meta_info.node_type[0], &nodes); EXPECT_TRUE(s.IsOk()); std::vector node_list; for (auto itr = nodes->begin(); itr != nodes->end(); ++itr) { node_list.push_back(*itr); } print_int_vec(node_list, "node list "); std::vector meta_path(59, 1); std::shared_ptr walk_path; s = graph.RandomWalk(node_list, meta_path, 2.0, 0.5, -1, &walk_path); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(walk_path->shape().ToString() == "<33,60>"); } TEST_F(MindDataTestGNNGraph, TestRandomWalkDefaults) { std::string path = "data/mindrecord/testGraphData/sns"; GraphDataImpl graph(path, 1); Status s = graph.Init(); EXPECT_TRUE(s.IsOk()); MetaInfo meta_info; s = graph.GetMetaInfo(&meta_info); EXPECT_TRUE(s.IsOk()); std::shared_ptr nodes; s = graph.GetAllNodes(meta_info.node_type[0], &nodes); EXPECT_TRUE(s.IsOk()); std::vector node_list; for (auto itr = nodes->begin(); itr != nodes->end(); ++itr) { node_list.push_back(*itr); } print_int_vec(node_list, "node list "); std::vector meta_path(59, 1); std::shared_ptr walk_path; s = graph.RandomWalk(node_list, meta_path, 1.0, 1.0, -1, &walk_path); EXPECT_TRUE(s.IsOk()); EXPECT_TRUE(walk_path->shape().ToString() == "<33,60>"); }