# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore.common.dtype as mstype from mindspore.common.initializer import Normal from mindspore import Tensor context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_conv2d_depthwiseconv2d_str(): net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal') input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) output = net(input_data) assert output.shape == (3, 128, 32, 28) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_conv2d_depthwiseconv2d_initializer(): net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal()) input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) output = net(input_data) assert output.shape == (3, 128, 32, 28) @pytest.mark.level0 @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend_training @pytest.mark.env_onecard def test_conv2d_depthwiseconv2d_tensor(): weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32)) net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init) input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32) output = net(input_data) assert output.shape == (3, 128, 32, 28)