# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops as P context.set_context(mode=context.GRAPH_MODE, device_target="CPU") class SqueezeNet(Cell): def __init__(self): super(SqueezeNet, self).__init__() self.squeeze = P.Squeeze() def construct(self, x): return self.squeeze(x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_squeeze_shape_float32(): x = np.ones(shape=[1, 2, 1, 1, 8, 3, 1]).astype(np.float32) expect = np.ones(shape=[2, 8, 3]).astype(np.float32) net = SqueezeNet() result = net(Tensor(x)) assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_squeeze_shape_int32(): x = np.array([[7], [11]]).astype(np.int32) expect = np.array([7, 11]).astype(np.int32) net = SqueezeNet() result = net(Tensor(x)) assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_squeeze_shape_bool(): x = np.array([[True], [False]]).astype(np.bool_) expect = np.array([True, False]).astype(np.bool_) net = SqueezeNet() result = net(Tensor(x)) assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_squeeze_shape_float64(): x = np.random.random([1, 2, 1, 1, 8, 3, 1]).astype(np.float64) expect = np.squeeze(x) net = SqueezeNet() result = net(Tensor(x)) print(result.asnumpy()[0][0], expect[0][0]) assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_squeeze_shape_uint16(): x = np.random.random([1, 2, 1, 1, 8, 3, 1]).astype(np.uint16) expect = np.squeeze(x) net = SqueezeNet() result = net(Tensor(x)) print(result.asnumpy()[0][0], expect[0][0]) assert np.allclose(result.asnumpy(), expect, rtol=1.e-4, atol=1.e-8, equal_nan=True)