# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import composite as C def smoothl1loss(beta): np.random.seed(42) prediction = np.random.randn(20).astype(np.float32) target = np.random.randn(20).astype(np.float32) net = nn.SmoothL1Loss(beta) return net(Tensor(prediction), Tensor(target)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_smoothl1loss(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True) epsilon = 1e-6 beta = 1.0 loss = smoothl1loss(beta) expect = [0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304, 2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008, 0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174, 0.08826803, 1.109165] diff = np.absolute(loss.asnumpy() - np.array(expect)) assert(diff < epsilon).all() beta = 1 / 9 loss = smoothl1loss(beta) expect = [0.9133791, 0.03446258, 0.5246048, 2.8922224, 0.2546738, 0.289504, 2.674651, 0.33618113, 0.07560876, 0.7786982, 0.08273339, 2.2624524, 0.19990394, 0.8000138, 2.4919074, 0.6030006, 1.1661391, 2.2183619, 0.3646064, 1.5536094] diff = np.absolute(loss.asnumpy() - np.array(expect)) assert(diff < epsilon).all() class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = C.GradOperation(get_all=True, sens_param=True) self.network = network def construct(self, x1, x2, sens): gout = self.grad(self.network)(x1, x2, sens) return gout def smoothl1loss_grad(beta): np.random.seed(42) prediction = np.random.randn(20).astype(np.float32) target = np.random.randn(20).astype(np.float32) sens = np.random.randn(20).astype(np.float32) net = nn.SmoothL1Loss(beta) grad = Grad(net) return grad(Tensor(prediction), Tensor(target), Tensor(sens)) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_smoothl1loss_grad(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True) epsilon = 1e-6 beta = 1.0 dx = smoothl1loss_grad(beta) dx1_expect = [-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093, 0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229, 0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995, 0.61330026, 0.83921754, -0.3092124, 0.1391843, -0.9755451] dx2_expect = [0.71552587, -0.01499678, 0.06709455, 0.30110368, 0.45868093, -0.24838912, 0.46063876, -0.41411355, -0.04507046, 1.4708229, -0.04481723, -0.38508227, 0.17292616, 0.52333146, 1.0309995, -0.61330026, -0.83921754, 0.3092124, -0.1391843, 0.9755451] diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect)) diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect)) assert(diff1 < epsilon).all() assert(diff2 < epsilon).all() beta = 1 / 9 dx = smoothl1loss_grad(beta) dx1_expect = [-0.73846656, 0.13497104, -0.11564828, -0.30110368, -1.478522, 0.7198442, -0.46063876, 1.0571222, 0.3436183, -1.7630402, 0.32408398, 0.38508227, -0.676922, -0.6116763, -1.0309995, 0.93128014, 0.83921754, -0.3092124, 0.33126342, -0.9755451] dx2_expect = [0.73846656, -0.13497104, 0.11564828, 0.30110368, 1.478522, -0.7198442, 0.46063876, -1.0571222, -0.3436183, 1.7630402, -0.32408398, -0.38508227, 0.676922, 0.6116763, 1.0309995, -0.93128014, -0.83921754, 0.3092124, -0.33126342, 0.9755451] diff1 = np.absolute(dx[0].asnumpy() - np.array(dx1_expect)) diff2 = np.absolute(dx[1].asnumpy() - np.array(dx2_expect)) assert(diff1 < epsilon).all() assert(diff2 < epsilon).all()