# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test tensor py""" import numpy as np import mindspore as ms from mindspore.common.api import _executor from mindspore.nn import Cell from mindspore.ops import operations as P from ..ut_filter import non_graph_engine def _attribute(tensor, shape_, size_, dtype_): result = (tensor.shape == shape_) and \ (tensor.size() == size_) and \ (tensor.dtype == dtype_) return result def test_tensor_init(): nparray = np.ones([2, 2], np.float32) ms.Tensor(nparray) ms.Tensor(nparray, dtype=ms.float32) @non_graph_engine def test_tensor_add(): a = ms.Tensor(np.ones([3, 3], np.float32)) b = ms.Tensor(np.ones([3, 3], np.float32)) a += b @non_graph_engine def test_tensor_sub(): a = ms.Tensor(np.ones([2, 3])) b = ms.Tensor(np.ones([2, 3])) b -= a @non_graph_engine def test_tensor_mul(): a = ms.Tensor(np.ones([3, 3])) b = ms.Tensor(np.ones([3, 3])) a *= b def test_tensor_dim(): arr = np.ones((1, 6)) b = ms.Tensor(arr) assert b.dim() == 2 def test_tensor_size(): arr = np.ones((1, 6)) b = ms.Tensor(arr) assert arr.size == b.size() def test_dtype(): a = ms.Tensor(np.ones((2, 3), dtype=np.int32)) assert a.dtype == ms.int32 def test_asnumpy(): npd = np.ones((2, 3)) a = ms.Tensor(npd) a.set_dtype(ms.int32) assert a.asnumpy().all() == npd.all() def test_print(): a = ms.Tensor(np.ones((2, 3))) a.set_dtype(ms.int32) print(a) def test_float(): a = ms.Tensor(np.ones((2, 3)), ms.float16) assert a.dtype == ms.float16 def test_tensor_method_sub(): """test_tensor_method_sub""" class Net(Cell): def __init__(self): super(Net, self).__init__() self.sub = P.Sub() def construct(self, x, y): out = x - y return out.transpose() net = Net() x = ms.Tensor(np.ones([5, 3], np.float32)) y = ms.Tensor(np.ones([8, 5, 3], np.float32)) _executor.compile(net, x, y) def test_tensor_method_mul(): """test_tensor_method_mul""" class Net(Cell): def __init__(self): super(Net, self).__init__() self.sub = P.Sub() def construct(self, x, y): out = x * (-y) return out.transpose() net = Net() x = ms.Tensor(np.ones([5, 3], np.float32)) y = ms.Tensor(np.ones([8, 5, 3], np.float32)) _executor.compile(net, x, y) def test_tensor_method_div(): """test_tensor_method_div""" class Net(Cell): def __init__(self): super(Net, self).__init__() self.sub = P.Sub() def construct(self, x, y): out = x / y return out.transpose() net = Net() x = ms.Tensor(np.ones([5, 3], np.float32)) y = ms.Tensor(np.ones([8, 5, 3], np.float32)) _executor.compile(net, x, y)