# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") class DynamicGRUV2(nn.Cell): def __init__(self): super(DynamicGRUV2, self).__init__() self.dynamic_gru = P.DynamicGRUV2() def construct(self, x, weight_i, weight_h, bias_i, bias_h, init_h): return self.dynamic_gru(x, weight_i, weight_h, bias_i, bias_h, None, init_h) @pytest.mark.level0 @pytest.mark.env_onecard @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training def test_dynamic_gru_v2(): x = Tensor(np.random.rand(2, 8, 64).astype(np.float16)) weight_i = Tensor(np.random.rand(64, 48).astype(np.float16)) weight_h = Tensor(np.random.rand(16, 48).astype(np.float16)) bias_i = Tensor(np.random.rand(48).astype(np.float16)) bias_h = Tensor(np.random.rand(48).astype(np.float16)) init_h = Tensor(np.random.rand(8, 16).astype(np.float16)) gru_net = DynamicGRUV2() output = gru_net(x, weight_i, weight_h, bias_i, bias_h, init_h) assert output[0].shape == (2, 8, 16)