# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor import mindspore.ops.operations._grad_ops as P context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_acosgrad_fp32(): error = np.ones(4) * 1.0e-7 x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float32) dout_np = np.array([1, 1, 1, 1]).astype(np.float32) output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np)) expect = np.array([-1, -1.0327955, -1.1547005, -1.0482849]) diff = output_ms.asnumpy() - expect assert np.all(diff < error) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_acosgrad_fp16(): error = np.ones(4) * 1.0e-3 x_np = np.array([0, -0.25, 0.5, 0.3]).astype(np.float16) dout_np = np.array([1, 1, 1, 1]).astype(np.float16) output_ms = P.ACosGrad()(Tensor(x_np), Tensor(dout_np)) expect = np.array([-1, -1.033, -1.154, -1.048]) diff = output_ms.asnumpy() - expect assert np.all(diff < error)