# Copyright 2020-21 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.ops import operations as P @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_topk_small_2d(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_np = np.random.rand(3, 4).astype(np.float32) k = 4 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(3, 4).astype(np.float32) k = 4 ms_output = P.TopK(False)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_topk_3d(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_np = np.random.rand(2, 256, 128).astype(np.float32) k = 4 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(2, 3, 4).astype(np.float32) k = 2 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_topk_big_2d(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_np = np.random.rand(512, 1024).astype(np.float32) k = 512 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) # sorted elements num greater than max thread per block x_np = np.random.rand(128, 2048).astype(np.float32) k = 1 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(32, 2048).astype(np.float32) k = 2048 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) # sorted elements num greater than max share memory per block x_np = np.random.rand(16, 40960).astype(np.float32) k = 1 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_topk_big_k(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_np = np.random.rand(8, 40960).astype(np.float32) k = 4096 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_topk_1d(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x_np = np.random.rand(12).astype(np.float32) k = 4 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np)[::-1][0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(1200).astype(np.float32) k = 256 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np)[::-1][0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(250000).astype(np.float32) k = 2000 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np)[::-1][0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(10240).astype(np.float32) k = 4096 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np)[::-1][0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(720).astype(np.float32) k = 720 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np)[::-1][0:k] assert np.allclose(ms_output[0].asnumpy()[:k], np_output)