# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ export quantization aware training network to infer `GEIR` backend. """ import argparse import numpy as np import mindspore from mindspore import Tensor from mindspore import context from mindspore.train.quant import quant from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.config import mnist_cfg as cfg from src.lenet_fusion import LeNet5 as LeNet5Fusion parser = argparse.ArgumentParser(description='MindSpore MNIST Example') parser.add_argument('--device_target', type=str, default="Ascend", choices=['Ascend', 'GPU'], help='device where the code will be implemented (default: Ascend)') parser.add_argument('--data_path', type=str, default="./MNIST_Data", help='path where the dataset is saved') parser.add_argument('--ckpt_path', type=str, default="", help='if mode is test, must provide path where the trained ckpt file') parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True') args = parser.parse_args() if __name__ == "__main__": context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target) # define fusion network network = LeNet5Fusion(cfg.num_classes) # convert fusion network to quantization aware network network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000) # load quantization aware network checkpoint param_dict = load_checkpoint(args.ckpt_path) load_param_into_net(network, param_dict) # export network inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32) quant.export(network, inputs, file_name="lenet_quant", file_format='GEIR')