# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train Deeptext and get checkpoint files.""" import argparse import ast import os import time import numpy as np from src.Deeptext.deeptext_vgg16 import Deeptext_VGG16 from src.config import config from src.dataset import data_to_mindrecord_byte_image, create_deeptext_dataset from src.lr_schedule import dynamic_lr from src.network_define import LossCallBack, WithLossCell, TrainOneStepCell, LossNet import mindspore.common.dtype as mstype from mindspore import context, Tensor from mindspore.common import set_seed from mindspore.communication.management import init from mindspore.context import ParallelMode from mindspore.nn import Momentum from mindspore.train import Model from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor from mindspore.train.serialization import load_checkpoint, load_param_into_net np.set_printoptions(threshold=np.inf) set_seed(1) parser = argparse.ArgumentParser(description="Deeptext training") parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: False.") parser.add_argument("--dataset", type=str, default="coco", help="Dataset name, default: coco.") parser.add_argument("--pre_trained", type=str, default="", help="Pretrained file path.") parser.add_argument("--device_id", type=int, default=5, help="Device id, default: 5.") parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.") parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.") parser.add_argument("--imgs_path", type=str, required=True, help="Train images files paths, multiple paths can be separated by ','.") parser.add_argument("--annos_path", type=str, required=True, help="Annotations files paths of train images, multiple paths can be separated by ','.") parser.add_argument("--mindrecord_prefix", type=str, default='Deeptext-TRAIN', help="Prefix of mindrecord.") args_opt = parser.parse_args() context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id) if __name__ == '__main__': if args_opt.run_distribute: rank = args_opt.rank_id device_num = args_opt.device_num context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True) init() else: rank = 0 device_num = 1 print("Start create dataset!") # It will generate mindrecord file in args_opt.mindrecord_dir, # and the file name is DeepText.mindrecord0, 1, ... file_num. prefix = args_opt.mindrecord_prefix config.train_images = args_opt.imgs_path config.train_txts = args_opt.annos_path mindrecord_dir = config.mindrecord_dir mindrecord_file = os.path.join(mindrecord_dir, prefix + "0") print("CHECKING MINDRECORD FILES ...") if rank == 0 and not os.path.exists(mindrecord_file): if not os.path.isdir(mindrecord_dir): os.makedirs(mindrecord_dir) if os.path.isdir(config.coco_root): if not os.path.exists(config.coco_root): print("Please make sure config:coco_root is valid.") raise ValueError(config.coco_root) print("Create Mindrecord. It may take some time.") data_to_mindrecord_byte_image(True, prefix) print("Create Mindrecord Done, at {}".format(mindrecord_dir)) else: print("coco_root not exits.") while not os.path.exists(mindrecord_file + ".db"): time.sleep(5) print("CHECKING MINDRECORD FILES DONE!") loss_scale = float(config.loss_scale) # When create MindDataset, using the fitst mindrecord file, such as FasterRcnn.mindrecord0. dataset = create_deeptext_dataset(mindrecord_file, repeat_num=1, batch_size=config.batch_size, device_num=device_num, rank_id=rank) dataset_size = dataset.get_dataset_size() print("Create dataset done! dataset_size = ", dataset_size) net = Deeptext_VGG16(config=config) net = net.set_train() load_path = args_opt.pre_trained if load_path != "": param_dict = load_checkpoint(load_path) load_param_into_net(net, param_dict) loss = LossNet() lr = Tensor(dynamic_lr(config, rank_size=device_num), mstype.float32) opt = Momentum(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum, weight_decay=config.weight_decay, loss_scale=config.loss_scale) net_with_loss = WithLossCell(net, loss) if args_opt.run_distribute: net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale, reduce_flag=True, mean=True, degree=device_num) else: net = TrainOneStepCell(net_with_loss, opt, sens=config.loss_scale) time_cb = TimeMonitor(data_size=dataset_size) loss_cb = LossCallBack(rank_id=rank) cb = [time_cb, loss_cb] if config.save_checkpoint: ckptconfig = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * dataset_size, keep_checkpoint_max=config.keep_checkpoint_max) save_checkpoint_path = os.path.join(config.save_checkpoint_path, "ckpt_" + str(rank) + "/") ckpoint_cb = ModelCheckpoint(prefix='deeptext', directory=save_checkpoint_path, config=ckptconfig) cb += [ckpoint_cb] model = Model(net) model.train(config.epoch_size, dataset, callbacks=cb, dataset_sink_mode=True)