# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """train resnet.""" import os import argparse from mindspore import context from mindspore.common import set_seed from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.train.model import Model from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.CrossEntropySmooth import CrossEntropySmooth parser = argparse.ArgumentParser(description='Image classification') parser.add_argument('--net', type=str, default=None, help='Resnet Model, either resnet18, ' 'resnet50 or resnet101') parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012') parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path') parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') parser.add_argument('--device_target', type=str, default='Ascend', choices=("Ascend", "GPU", "CPU"), help="Device target, support Ascend, GPU and CPU.") args_opt = parser.parse_args() set_seed(1) if args_opt.net in ("resnet18", "resnet50"): if args_opt.net == "resnet18": from src.resnet import resnet18 as resnet if args_opt.net == "resnet50": from src.resnet import resnet50 as resnet if args_opt.dataset == "cifar10": from src.config import config1 as config from src.dataset import create_dataset1 as create_dataset else: from src.config import config2 as config from src.dataset import create_dataset2 as create_dataset elif args_opt.net == "resnet101": from src.resnet import resnet101 as resnet from src.config import config3 as config from src.dataset import create_dataset3 as create_dataset else: from src.resnet import se_resnet50 as resnet from src.config import config4 as config from src.dataset import create_dataset4 as create_dataset if __name__ == '__main__': target = args_opt.device_target # init context context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False) if target == "Ascend": device_id = int(os.getenv('DEVICE_ID')) context.set_context(device_id=device_id) # create dataset dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=False, batch_size=config.batch_size, target=target) step_size = dataset.get_dataset_size() # define net net = resnet(class_num=config.class_num) # load checkpoint param_dict = load_checkpoint(args_opt.checkpoint_path) load_param_into_net(net, param_dict) net.set_train(False) # define loss, model if args_opt.dataset == "imagenet2012": if not config.use_label_smooth: config.label_smooth_factor = 0.0 loss = CrossEntropySmooth(sparse=True, reduction='mean', smooth_factor=config.label_smooth_factor, num_classes=config.class_num) else: loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') # define model model = Model(net, loss_fn=loss, metrics={'top_1_accuracy', 'top_5_accuracy'}) # eval model res = model.eval(dataset) print("result:", res, "ckpt=", args_opt.checkpoint_path)