# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # less required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """post process for 310 inference""" import os import json import argparse import numpy as np from src.config import config2 as config batch_size = 1 parser = argparse.ArgumentParser(description="resnet inference") parser.add_argument("--result_path", type=str, required=True, help="result files path.") parser.add_argument("--label_path", type=str, required=True, help="image file path.") args = parser.parse_args() def get_result(result_path, label_path): files = os.listdir(result_path) with open(label_path, "r") as label: labels = json.load(label) top1 = 0 top5 = 0 total_data = len(files) for file in files: img_ids_name = file.split('_0.')[0] data_path = os.path.join(result_path, img_ids_name + "_0.bin") result = np.fromfile(data_path, dtype=np.float32).reshape(batch_size, config.class_num) for batch in range(batch_size): predict = np.argsort(-result[batch], axis=-1) if labels[img_ids_name+".JPEG"] == predict[0]: top1 += 1 if labels[img_ids_name+".JPEG"] in predict[:5]: top5 += 1 print(f"Total data: {total_data}, top1 accuracy: {top1/total_data}, top5 accuracy: {top5/total_data}.") if __name__ == '__main__': get_result(args.result_path, args.label_path)