# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """dataset base.""" import os from mindspore import dataset as ds from mindspore.common import dtype as mstype from mindspore.dataset.transforms import c_transforms as C from mindspore.dataset.vision import Inter from mindspore.dataset.vision import c_transforms as CV def create_mnist_dataset(mode='train', num_samples=2, batch_size=2): """create dataset for train or test""" mnist_path = '/home/workspace/mindspore_dataset/mnist' num_parallel_workers = 1 # define dataset mnist_ds = ds.MnistDataset(os.path.join(mnist_path, mode), num_samples=num_samples, shuffle=False) resize_height, resize_width = 32, 32 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode rescale_nml_op = CV.Rescale(1 / 0.3081, -1 * 0.1307 / 0.3081) rescale_op = CV.Rescale(1.0 / 255.0, shift=0.0) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) # apply DatasetOps mnist_ds = mnist_ds.batch(batch_size=batch_size, drop_remainder=True) return mnist_ds